Merge pull request #45 from pitmonticone/docstrings
docs: clean docstrings
This commit is contained in:
commit
de720c6f69
9 changed files with 22 additions and 24 deletions
|
@ -87,7 +87,7 @@ lemma LinSols.ext {χ : ACCSystemLinear} {S T : χ.LinSols} (h : S.val = T.val)
|
|||
simp_all only
|
||||
|
||||
/-- An instance providing the operations and properties for `LinSols` to form an
|
||||
addative commutative monoid. -/
|
||||
additive commutative monoid. -/
|
||||
@[simps!]
|
||||
instance linSolsAddCommMonoid (χ : ACCSystemLinear) :
|
||||
AddCommMonoid χ.LinSols where
|
||||
|
|
|
@ -9,7 +9,7 @@ import Mathlib.Algebra.BigOperators.Fin
|
|||
/-!
|
||||
# Linear maps
|
||||
|
||||
Some definitions and properites of linear, bilinear, and trilinear maps, along with homogeneous
|
||||
Some definitions and properties of linear, bilinear, and trilinear maps, along with homogeneous
|
||||
quadratic and cubic equations.
|
||||
|
||||
## TODO
|
||||
|
@ -62,7 +62,7 @@ instance instFun (V : Type) [AddCommMonoid V] [Module ℚ V] :
|
|||
cases g
|
||||
simp_all
|
||||
|
||||
/-- The construction of a symmetric bilinear map from smul and map_add in the first factor,
|
||||
/-- The construction of a symmetric bilinear map from `smul` and `map_add` in the first factor,
|
||||
and swap. -/
|
||||
@[simps!]
|
||||
def mk₂ (f : V × V → ℚ) (map_smul : ∀ a S T, f (a • S, T) = a * f (S, T))
|
||||
|
@ -196,7 +196,7 @@ instance instFun : FunLike (TriLinearSymm V) V (V →ₗ[ℚ] V →ₗ[ℚ] ℚ
|
|||
cases g
|
||||
simp_all
|
||||
|
||||
/-- The construction of a symmetric trilinear map from smul and map_add in the first factor,
|
||||
/-- The construction of a symmetric trilinear map from `smul` and `map_add` in the first factor,
|
||||
and two swap. -/
|
||||
@[simps!]
|
||||
def mk₃ (f : V × V × V→ ℚ) (map_smul : ∀ a S T L, f (a • S, T, L) = a * f (S, T, L))
|
||||
|
|
|
@ -7,7 +7,7 @@ import HepLean.AnomalyCancellation.MSSMNu.Basic
|
|||
/-!
|
||||
# The definition of the solution B₃ and properties thereof
|
||||
|
||||
We define $B_3$ and show that it is a double point of the cubic.
|
||||
We define `B₃` and show that it is a double point of the cubic.
|
||||
|
||||
# References
|
||||
|
||||
|
@ -24,7 +24,7 @@ open MSSMCharges
|
|||
open MSSMACCs
|
||||
open BigOperators
|
||||
|
||||
/-- $B_3$ is the charge which is $B-L$ in all families, but with the third
|
||||
/-- `B₃` is the charge which is $B-L$ in all families, but with the third
|
||||
family of the opposite sign. -/
|
||||
def B₃AsCharge : MSSMACC.charges := toSpecies.symm
|
||||
⟨fun s => fun i =>
|
||||
|
@ -52,7 +52,7 @@ def B₃AsCharge : MSSMACC.charges := toSpecies.symm
|
|||
| 0 => -3
|
||||
| 1 => 3⟩
|
||||
|
||||
/-- $B_3$ as a solution. -/
|
||||
/-- `B₃` as a solution. -/
|
||||
def B₃ : MSSMACC.Sols :=
|
||||
MSSMACC.AnomalyFreeMk B₃AsCharge (by rfl) (by rfl) (by rfl) (by rfl) (by rfl) (by rfl)
|
||||
|
||||
|
|
|
@ -27,8 +27,8 @@ open MSSMCharges
|
|||
open MSSMACCs
|
||||
open BigOperators
|
||||
|
||||
/-- The plane of linear solutions spanned by $Y_3$, $B_3$ and $R$, a point orthogonal
|
||||
to $Y_3$ and $B_3$. -/
|
||||
/-- The plane of linear solutions spanned by `Y₃`, `B₃` and `R`, a point orthogonal
|
||||
to `Y₃` and `B₃`. -/
|
||||
def planeY₃B₃ (R : MSSMACC.AnomalyFreePerp) (a b c : ℚ) : MSSMACC.LinSols :=
|
||||
a • Y₃.1.1 + b • B₃.1.1 + c • R.1
|
||||
|
||||
|
@ -127,7 +127,7 @@ lemma planeY₃B₃_cubic (R : MSSMACC.AnomalyFreePerp) (a b c : ℚ) :
|
|||
rw [show (TriLinearSymm.toCubic cubeTriLin) R.val = cubeTriLin R.val R.val R.val by rfl]
|
||||
ring
|
||||
|
||||
/-- The line in the plane spanned by $Y_3$, $B_3$ and $R$ which is in the quadratic,
|
||||
/-- The line in the plane spanned by `Y₃`, `B₃` and `R` which is in the quadratic,
|
||||
as `LinSols`. -/
|
||||
def lineQuadAFL (R : MSSMACC.AnomalyFreePerp) (c1 c2 c3 : ℚ) : MSSMACC.LinSols :=
|
||||
planeY₃B₃ R (c2 * quadBiLin R.val R.val - 2 * c3 * quadBiLin B₃.val R.val)
|
||||
|
@ -141,7 +141,7 @@ lemma lineQuadAFL_quad (R : MSSMACC.AnomalyFreePerp) (c1 c2 c3 : ℚ) :
|
|||
apply Or.inr
|
||||
ring
|
||||
|
||||
/-- The line in the plane spanned by $Y_3$, $B_3$ and $R$ which is in the quadratic. -/
|
||||
/-- The line in the plane spanned by `Y₃`, `B₃` and `R` which is in the quadratic. -/
|
||||
def lineQuad (R : MSSMACC.AnomalyFreePerp) (c1 c2 c3 : ℚ) : MSSMACC.QuadSols :=
|
||||
AnomalyFreeQuadMk' (lineQuadAFL R c1 c2 c3) (lineQuadAFL_quad R c1 c2 c3)
|
||||
|
||||
|
@ -184,7 +184,7 @@ def α₁ (T : MSSMACC.AnomalyFreePerp) : ℚ :=
|
|||
rw [planeY₃B₃_cubic, α₁, α₂, α₃]
|
||||
ring
|
||||
|
||||
/-- The line in the plane spanned by $Y_3$, $B_3$ and $R$ which is in the cubic. -/
|
||||
/-- The line in the plane spanned by `Y₃`, `B₃` and `R` which is in the cubic. -/
|
||||
def lineCube (R : MSSMACC.AnomalyFreePerp) (a₁ a₂ a₃ : ℚ) :
|
||||
MSSMACC.LinSols :=
|
||||
planeY₃B₃ R
|
||||
|
|
|
@ -233,7 +233,7 @@ lemma toSolNSQuad_eq_planeY₃B₃_on_α (R : MSSMACC.AnomalyFreePerp) :
|
|||
ring_nf
|
||||
simp
|
||||
|
||||
/-- Given a `R ` perpendicular to $Y_3$, and $B_3$, a element of `Sols`. This map is
|
||||
/-- Given a `R ` perpendicular to `Y₃` and `B₃`, an element of `Sols`. This map is
|
||||
not surjective. -/
|
||||
def toSolNS : MSSMACC.AnomalyFreePerp × ℚ × ℚ × ℚ → MSSMACC.Sols := fun (R, a, _ , _) =>
|
||||
a • AnomalyFreeMk'' (toSolNSQuad R) (toSolNSQuad_cube R)
|
||||
|
@ -332,7 +332,6 @@ def inQuadProj (T : inQuadSol) : inQuad × ℚ × ℚ × ℚ :=
|
|||
- cubeTriLin T.val.val T.val.val Y₃.val
|
||||
* (dot Y₃.val T.val.val - 2 * dot B₃.val T.val.val)))
|
||||
|
||||
|
||||
lemma inQuadToSol_proj (T : inQuadSol) : inQuadToSol (inQuadProj T) = T.val := by
|
||||
rw [inQuadProj, inQuadToSol_smul]
|
||||
apply ACCSystem.Sols.ext
|
||||
|
@ -371,7 +370,6 @@ lemma inQuadCubeToSol_smul (R : inQuadCube) (c₁ c₂ c₃ d : ℚ) :
|
|||
rw [planeY₃B₃_smul]
|
||||
rfl
|
||||
|
||||
|
||||
/-- On elements of `inQuadCubeSol` a right-inverse to `inQuadCubeToSol`. -/
|
||||
def inQuadCubeProj (T : inQuadCubeSol) : inQuadCube × ℚ × ℚ × ℚ :=
|
||||
(⟨⟨⟨proj T.val.1.1, (linEqPropSol_iff_proj_linEqProp T.val).mp T.prop.1 ⟩,
|
||||
|
|
|
@ -10,7 +10,7 @@ import HepLean.StandardModel.HiggsBoson.Basic
|
|||
|
||||
The two Higgs doublet model is the standard model plus an additional Higgs doublet.
|
||||
|
||||
Currently this file contains the definition of the 2HDM optential.
|
||||
Currently this file contains the definition of the 2HDM potential.
|
||||
|
||||
-/
|
||||
|
||||
|
|
|
@ -70,7 +70,7 @@ lemma zero_nonneg_iff (v : PreFourVelocity) : 0 ≤ v.1 0 ↔ 1 ≤ v.1 0 := by
|
|||
· intro h
|
||||
linarith
|
||||
|
||||
/-- A `PreFourVelocity` is a `FourVelocity` if its time componenet is non-negative. -/
|
||||
/-- A `PreFourVelocity` is a `FourVelocity` if its time component is non-negative. -/
|
||||
def IsFourVelocity (v : PreFourVelocity) : Prop := 0 ≤ v.1 0
|
||||
|
||||
|
||||
|
|
|
@ -12,14 +12,14 @@ import Mathlib.Topology.Constructions
|
|||
|
||||
This file defines those Lorentz which are boosts.
|
||||
|
||||
We first define generalised boosts, which are restricted lorentz transforamations taking
|
||||
a four velocity `u` to a four velcoity `v`.
|
||||
We first define generalised boosts, which are restricted lorentz transformations taking
|
||||
a four velocity `u` to a four velocity `v`.
|
||||
|
||||
A boost is the speical case of a generalised boost when `u = stdBasis 0`.
|
||||
A boost is the special case of a generalised boost when `u = stdBasis 0`.
|
||||
|
||||
## TODO
|
||||
|
||||
- Show that generalised boosts are in the restircted Lorentz group.
|
||||
- Show that generalised boosts are in the restricted Lorentz group.
|
||||
- Define boosts.
|
||||
|
||||
## References
|
||||
|
@ -35,7 +35,7 @@ namespace lorentzGroup
|
|||
|
||||
open FourVelocity
|
||||
|
||||
/-- An auxillary linear map used in the definition of a genearlised boost. -/
|
||||
/-- An auxillary linear map used in the definition of a generalised boost. -/
|
||||
def genBoostAux₁ (u v : FourVelocity) : spaceTime →ₗ[ℝ] spaceTime where
|
||||
toFun x := (2 * ηLin x u) • v.1.1
|
||||
map_add' x y := by
|
||||
|
@ -61,7 +61,7 @@ def genBoostAux₂ (u v : FourVelocity) : spaceTime →ₗ[ℝ] spaceTime where
|
|||
rw [mul_div_assoc, neg_mul_eq_mul_neg, smul_smul]
|
||||
rfl
|
||||
|
||||
/-- An genearlised boost. This is a Lorentz transformation which takes the four velocity `u`
|
||||
/-- An generalised boost. This is a Lorentz transformation which takes the four velocity `u`
|
||||
to `v`. -/
|
||||
def genBoost (u v : FourVelocity) : spaceTime →ₗ[ℝ] spaceTime :=
|
||||
LinearMap.id + genBoostAux₁ u v + genBoostAux₂ u v
|
||||
|
|
|
@ -171,7 +171,7 @@ lemma mul_not_othchron_of_not_othchron_othchron {Λ Λ' : lorentzGroup} (h : ¬
|
|||
rw [zero_zero_mul]
|
||||
exact euclid_norm_not_IsFourVelocity_IsFourVelocity h h'
|
||||
|
||||
/-- The homomorphism from `lorentzGroup` to `ℤ₂` whose kernal are the Orthochronous elements. -/
|
||||
/-- The homomorphism from `lorentzGroup` to `ℤ₂` whose kernel are the Orthochronous elements. -/
|
||||
def orthchroRep : lorentzGroup →* ℤ₂ where
|
||||
toFun := orthchroMap
|
||||
map_one' := by
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue