feat: Homomorphism from SL(2, C) to Lorentz Group

This commit is contained in:
jstoobysmith 2024-06-13 10:57:25 -04:00
parent e2296a08b0
commit de89fd7ef0
4 changed files with 141 additions and 27 deletions

View file

@ -45,19 +45,17 @@ noncomputable def fromSelfAdjointMatrix' (x : selfAdjoint (Matrix (Fin 2) (Fin 2
/-- The linear equivalence between the vector-space `spaceTime` and self-adjoint /-- The linear equivalence between the vector-space `spaceTime` and self-adjoint
2×2-complex matrices. -/ 2×2-complex matrices. -/
noncomputable def spaceTimeToHerm : spaceTime ≃ₗ[] selfAdjoint (Matrix (Fin 2) (Fin 2) ) where noncomputable def toSelfAdjointMatrix : spaceTime ≃ₗ[] selfAdjoint (Matrix (Fin 2) (Fin 2) ) where
toFun := toSelfAdjointMatrix' toFun := toSelfAdjointMatrix'
invFun := fromSelfAdjointMatrix' invFun := fromSelfAdjointMatrix'
left_inv x := by left_inv x := by
simp only [fromSelfAdjointMatrix', one_div, Fin.isValue, toSelfAdjointMatrix'_coe, of_apply, simp only [fromSelfAdjointMatrix', one_div, toSelfAdjointMatrix'_coe, of_apply, cons_val',
cons_val', cons_val_zero, empty_val', cons_val_fin_one, cons_val_one, head_cons, cons_val_zero, empty_val', cons_val_fin_one, cons_val_one, head_cons, head_fin_const,
head_fin_const, add_add_sub_cancel, add_re, ofReal_re, mul_re, I_re, mul_zero, ofReal_im, add_add_sub_cancel, add_re, ofReal_re, mul_re, I_re, mul_zero, ofReal_im, I_im, mul_one,
I_im, mul_one, sub_self, add_zero, add_im, mul_im, zero_add, add_sub_sub_cancel, sub_self, add_zero, add_im, mul_im, zero_add, add_sub_sub_cancel, half_add_self]
half_add_self] field_simp [spaceTime]
funext i ext1 x
fin_cases i <;> field_simp fin_cases x <;> rfl
rfl
rfl
right_inv x := by right_inv x := by
simp only [toSelfAdjointMatrix', toMatrix, fromSelfAdjointMatrix', one_div, Fin.isValue, add_re, simp only [toSelfAdjointMatrix', toMatrix, fromSelfAdjointMatrix', one_div, Fin.isValue, add_re,
sub_re, cons_val_zero, ofReal_mul, ofReal_inv, ofReal_ofNat, ofReal_add, cons_val_three, sub_re, cons_val_zero, ofReal_mul, ofReal_inv, ofReal_ofNat, ofReal_add, cons_val_three,
@ -73,19 +71,22 @@ noncomputable def spaceTimeToHerm : spaceTime ≃ₗ[] selfAdjoint (Matrix (F
rfl rfl
exact conj_eq_iff_re.mp (congrArg (fun M => M 1 1) $ selfAdjoint.mem_iff.mp x.2 ) exact conj_eq_iff_re.mp (congrArg (fun M => M 1 1) $ selfAdjoint.mem_iff.mp x.2 )
map_add' x y := by map_add' x y := by
simp only [toSelfAdjointMatrix', toMatrix, Fin.isValue, add_apply, ofReal_add, ext i j : 2
AddSubmonoid.mk_add_mk, of_add_of, add_cons, head_cons, tail_cons, empty_add_empty, simp only [toSelfAdjointMatrix'_coe, add_apply, ofReal_add, of_apply, cons_val', empty_val',
Subtype.mk.injEq, EmbeddingLike.apply_eq_iff_eq] cons_val_fin_one, AddSubmonoid.coe_add, AddSubgroup.coe_toAddSubmonoid, Matrix.add_apply]
ext i j fin_cases i <;> fin_cases j <;> simp <;> ring
fin_cases i <;> fin_cases j <;>
field_simp [fromSelfAdjointMatrix', toMatrix, conj_ofReal, add_apply]
<;> ring
map_smul' r x := by map_smul' r x := by
ext i j : 2
simp only [toSelfAdjointMatrix', toMatrix, Fin.isValue, smul_apply, ofReal_mul, simp only [toSelfAdjointMatrix', toMatrix, Fin.isValue, smul_apply, ofReal_mul,
RingHom.id_apply] RingHom.id_apply]
ext i j
fin_cases i <;> fin_cases j <;> fin_cases i <;> fin_cases j <;>
field_simp [fromSelfAdjointMatrix', toMatrix, conj_ofReal, smul_apply] field_simp [fromSelfAdjointMatrix', toMatrix, conj_ofReal, smul_apply]
<;> ring <;> ring
lemma det_eq_ηLin (x : spaceTime) : det (toSelfAdjointMatrix x).1 = ηLin x x := by
simp [toSelfAdjointMatrix, ηLin_expand]
ring_nf
simp only [Fin.isValue, I_sq, mul_neg, mul_one]
ring
end spaceTime end spaceTime

View file

@ -5,6 +5,7 @@ Authors: Joseph Tooby-Smith
-/ -/
import HepLean.SpaceTime.Metric import HepLean.SpaceTime.Metric
import HepLean.SpaceTime.FourVelocity import HepLean.SpaceTime.FourVelocity
import HepLean.SpaceTime.AsSelfAdjointMatrix
import Mathlib.GroupTheory.SpecificGroups.KleinFour import Mathlib.GroupTheory.SpecificGroups.KleinFour
import Mathlib.Geometry.Manifold.Algebra.LieGroup import Mathlib.Geometry.Manifold.Algebra.LieGroup
import Mathlib.Analysis.Matrix import Mathlib.Analysis.Matrix
@ -45,6 +46,30 @@ namespace PreservesηLin
variable (Λ : Matrix (Fin 4) (Fin 4) ) variable (Λ : Matrix (Fin 4) (Fin 4) )
lemma iff_norm : PreservesηLin Λ ↔
∀ (x : spaceTime), ηLin (Λ *ᵥ x) (Λ *ᵥ x) = ηLin x x := by
refine Iff.intro (fun h x => h x x) (fun h x y => ?_)
have hp := h (x + y)
have hn := h (x - y)
rw [mulVec_add] at hp
rw [mulVec_sub] at hn
simp only [map_add, LinearMap.add_apply, map_sub, LinearMap.sub_apply] at hp hn
rw [ηLin_symm (Λ *ᵥ y) (Λ *ᵥ x), ηLin_symm y x] at hp hn
linear_combination hp / 4 + -1 * hn / 4
lemma iff_det_selfAdjoint : PreservesηLin Λ ↔
∀ (x : selfAdjoint (Matrix (Fin 2) (Fin 2) )),
det ((toSelfAdjointMatrix ∘ toLin stdBasis stdBasis Λ ∘ toSelfAdjointMatrix.symm) x).1
= det x.1 := by
rw [iff_norm]
apply Iff.intro
intro h x
have h1 := congrArg ofReal $ h (toSelfAdjointMatrix.symm x)
simpa [← det_eq_ηLin] using h1
intro h x
have h1 := h (toSelfAdjointMatrix x)
simpa [det_eq_ηLin] using h1
lemma iff_on_right : PreservesηLin Λ ↔ lemma iff_on_right : PreservesηLin Λ ↔
∀ (x y : spaceTime), ηLin x ((η * Λᵀ * η * Λ) *ᵥ y) = ηLin x y := by ∀ (x y : spaceTime), ηLin x ((η * Λᵀ * η * Λ) *ᵥ y) = ηLin x y := by
apply Iff.intro apply Iff.intro
@ -74,14 +99,13 @@ lemma iff_transpose : PreservesηLin Λ ↔ PreservesηLin Λᵀ := by
rw [transpose_mul, transpose_mul, transpose_mul, η_transpose, rw [transpose_mul, transpose_mul, transpose_mul, η_transpose,
← mul_assoc, transpose_one] at h1 ← mul_assoc, transpose_one] at h1
rw [iff_matrix' Λ.transpose, ← h1] rw [iff_matrix' Λ.transpose, ← h1]
rw [← mul_assoc, ← mul_assoc] noncomm_ring
exact Matrix.mul_assoc (Λᵀ * η) Λᵀᵀ η
intro h intro h
have h1 := congrArg transpose ((iff_matrix Λ.transpose).mp h) have h1 := congrArg transpose ((iff_matrix Λ.transpose).mp h)
rw [transpose_mul, transpose_mul, transpose_mul, η_transpose, rw [transpose_mul, transpose_mul, transpose_mul, η_transpose,
← mul_assoc, transpose_one, transpose_transpose] at h1 ← mul_assoc, transpose_one, transpose_transpose] at h1
rw [iff_matrix', ← h1] rw [iff_matrix', ← h1]
repeat rw [← mul_assoc] noncomm_ring
/-- The lift of a matrix which preserves `ηLin` to an invertible matrix. -/ /-- The lift of a matrix which preserves `ηLin` to an invertible matrix. -/
def liftGL {Λ : Matrix (Fin 4) (Fin 4) } (h : PreservesηLin Λ) : GL (Fin 4) := def liftGL {Λ : Matrix (Fin 4) (Fin 4) } (h : PreservesηLin Λ) : GL (Fin 4) :=

View file

@ -182,9 +182,7 @@ lemma ηLin_expand (x y : spaceTime) : ηLin x y = x 0 * y 0 - x 1 * y 1 - x 2 *
lemma ηLin_expand_self (x : spaceTime) : ηLin x x = x 0 ^ 2 - ‖x.space‖ ^ 2 := by lemma ηLin_expand_self (x : spaceTime) : ηLin x x = x 0 ^ 2 - ‖x.space‖ ^ 2 := by
rw [← @real_inner_self_eq_norm_sq, @PiLp.inner_apply, Fin.sum_univ_three, ηLin_expand] rw [← @real_inner_self_eq_norm_sq, @PiLp.inner_apply, Fin.sum_univ_three, ηLin_expand]
simp only [Fin.isValue, space, cons_val_zero, RCLike.inner_apply, conj_trivial, cons_val_one, noncomm_ring
head_cons, cons_val_two, Nat.succ_eq_add_one, Nat.reduceAdd, tail_cons]
ring
lemma time_elm_sq_of_ηLin (x : spaceTime) : x 0 ^ 2 = ηLin x x + ‖x.space‖ ^ 2 := by lemma time_elm_sq_of_ηLin (x : spaceTime) : x 0 ^ 2 = ηLin x x + ‖x.space‖ ^ 2 := by
rw [ηLin_expand_self] rw [ηLin_expand_self]
@ -197,9 +195,7 @@ lemma ηLin_leq_time_sq (x : spaceTime) : ηLin x x ≤ x 0 ^ 2 := by
lemma ηLin_space_inner_product (x y : spaceTime) : lemma ηLin_space_inner_product (x y : spaceTime) :
ηLin x y = x 0 * y 0 - ⟪x.space, y.space⟫_ := by ηLin x y = x 0 * y 0 - ⟪x.space, y.space⟫_ := by
rw [ηLin_expand, @PiLp.inner_apply, Fin.sum_univ_three] rw [ηLin_expand, @PiLp.inner_apply, Fin.sum_univ_three]
simp only [Fin.isValue, space, cons_val_zero, RCLike.inner_apply, conj_trivial, cons_val_one, noncomm_ring
head_cons, cons_val_two, Nat.succ_eq_add_one, Nat.reduceAdd, tail_cons]
ring
lemma ηLin_ge_abs_inner_product (x y : spaceTime) : lemma ηLin_ge_abs_inner_product (x y : spaceTime) :
x 0 * y 0 - ‖⟪x.space, y.space⟫_‖ ≤ (ηLin x y) := by x 0 * y 0 - ‖⟪x.space, y.space⟫_‖ ≤ (ηLin x y) := by

View file

@ -0,0 +1,93 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzGroup.Basic
import Mathlib.RepresentationTheory.Basic
/-!
# The group SL(2, ) and it's relation to the Lorentz group
The aim of this file is to give the relationship between `SL(2, )` and the Lorentz group.
## TODO
This file is a working progress.
-/
namespace spaceTime
open Matrix
open MatrixGroups
open Complex
namespace SL2C
open spaceTime
noncomputable section
/-- Given an element `M ∈ SL(2, )` the linear map from `selfAdjoint (Matrix (Fin 2) (Fin 2) )` to
itself defined by `A ↦ M * A * Mᴴ`. -/
@[simps!]
def toLinearMapSelfAdjointMatrix (M : SL(2, )) :
selfAdjoint (Matrix (Fin 2) (Fin 2) ) →ₗ[] selfAdjoint (Matrix (Fin 2) (Fin 2) ) where
toFun A := ⟨M.1 * A.1 * Matrix.conjTranspose M,
by
noncomm_ring [selfAdjoint.mem_iff, star_eq_conjTranspose,
conjTranspose_mul, conjTranspose_conjTranspose,
(star_eq_conjTranspose A.1).symm.trans $ selfAdjoint.mem_iff.mp A.2]⟩
map_add' A B := by
noncomm_ring [AddSubmonoid.coe_add, AddSubgroup.coe_toAddSubmonoid, AddSubmonoid.mk_add_mk,
Subtype.mk.injEq]
map_smul' r A := by
noncomm_ring [selfAdjoint.val_smul, Algebra.mul_smul_comm, Algebra.smul_mul_assoc,
RingHom.id_apply]
/-- The representation of `SL(2, )` on `selfAdjoint (Matrix (Fin 2) (Fin 2) )` given by
`M A ↦ M * A * Mᴴ`. -/
@[simps!]
def repSelfAdjointMatrix : Representation SL(2, ) $ selfAdjoint (Matrix (Fin 2) (Fin 2) ) where
toFun := toLinearMapSelfAdjointMatrix
map_one' := by
noncomm_ring [toLinearMapSelfAdjointMatrix, SpecialLinearGroup.coe_one, one_mul,
conjTranspose_one, mul_one, Subtype.coe_eta]
map_mul' M N := by
ext x i j : 3
noncomm_ring [toLinearMapSelfAdjointMatrix, SpecialLinearGroup.coe_mul, mul_assoc,
conjTranspose_mul, LinearMap.coe_mk, AddHom.coe_mk, LinearMap.mul_apply]
/-- The representation of `SL(2, )` on `spaceTime` obtained from `toSelfAdjointMatrix` and
`repSelfAdjointMatrix`. -/
def repSpaceTime : Representation SL(2, ) spaceTime where
toFun M := toSelfAdjointMatrix.symm.comp ((repSelfAdjointMatrix M).comp
toSelfAdjointMatrix.toLinearMap)
map_one' := by
ext
simp
map_mul' M N := by
ext x : 3
simp
/-- Given an element `M ∈ SL(2, )` the corresponding element of the Lorentz group. -/
@[simps!]
def toLorentzGroupElem (M : SL(2, )) : 𝓛 :=
⟨LinearMap.toMatrix stdBasis stdBasis (repSpaceTime M) ,
by simp [repSpaceTime, PreservesηLin.iff_det_selfAdjoint]⟩
/-- The group homomorphism from ` SL(2, )` to the Lorentz group `𝓛`. -/
@[simps!]
def toLorentzGroup : SL(2, ) →* 𝓛 where
toFun := toLorentzGroupElem
map_one' := by
simp only [toLorentzGroupElem, _root_.map_one, LinearMap.toMatrix_one]
rfl
map_mul' M N := by
apply Subtype.eq
simp only [toLorentzGroupElem, _root_.map_mul, LinearMap.toMatrix_mul,
lorentzGroupIsGroup_mul_coe]
end
end SL2C
end spaceTime