docs: Added documentation for Higgs fields
This commit is contained in:
parent
ad8371ccae
commit
e09170e115
3 changed files with 66 additions and 12 deletions
|
@ -23,7 +23,7 @@ This file defines the basic properties for the higgs field in the standard model
|
|||
|
||||
## References
|
||||
|
||||
- We use conventions given in: https://pdg.lbl.gov/2019/reviews/rpp2019-rev-higgs-boson.pdf
|
||||
- We use conventions given in: [Review of Particle Physics, PDG][ParticleDataGroup:2018ovx]
|
||||
|
||||
-/
|
||||
universe v u
|
||||
|
|
|
@ -24,7 +24,7 @@ This file is a import of `SM.HiggsBoson.Basic`.
|
|||
|
||||
## References
|
||||
|
||||
- We use conventions given in: https://pdg.lbl.gov/2019/reviews/rpp2019-rev-higgs-boson.pdf
|
||||
- We use conventions given in: [Review of Particle Physics, PDG][ParticleDataGroup:2018ovx]
|
||||
|
||||
-/
|
||||
universe v u
|
||||
|
@ -36,6 +36,12 @@ open Matrix
|
|||
open Complex
|
||||
open ComplexConjugate
|
||||
|
||||
/-!
|
||||
|
||||
## The definition of the Higgs vector space.
|
||||
|
||||
-/
|
||||
|
||||
/-- The complex vector space in which the Higgs field takes values. -/
|
||||
abbrev HiggsVec := EuclideanSpace ℂ (Fin 2)
|
||||
|
||||
|
@ -50,6 +56,15 @@ lemma smooth_higgsVecToFin2ℂ : Smooth 𝓘(ℝ, HiggsVec) 𝓘(ℝ, Fin 2 →
|
|||
ContinuousLinearMap.smooth higgsVecToFin2ℂ
|
||||
|
||||
namespace HiggsVec
|
||||
/-- An orthonormal basis of higgsVec. -/
|
||||
noncomputable def orthonormBasis : OrthonormalBasis (Fin 2) ℂ HiggsVec :=
|
||||
EuclideanSpace.basisFun (Fin 2) ℂ
|
||||
|
||||
/-!
|
||||
|
||||
## The representation of the gauge group on the Higgs vector space
|
||||
|
||||
-/
|
||||
|
||||
/-- The Higgs representation as a homomorphism from the gauge group to unitary `2×2`-matrices. -/
|
||||
@[simps!]
|
||||
|
@ -63,10 +78,6 @@ noncomputable def higgsRepUnitary : GaugeGroup →* unitaryGroup (Fin 2) ℂ whe
|
|||
repeat rw [mul_assoc]
|
||||
map_one' := by simp
|
||||
|
||||
/-- An orthonormal basis of higgsVec. -/
|
||||
noncomputable def orthonormBasis : OrthonormalBasis (Fin 2) ℂ HiggsVec :=
|
||||
EuclideanSpace.basisFun (Fin 2) ℂ
|
||||
|
||||
/-- Takes in a `2×2`-matrix and returns a linear map of `higgsVec`. -/
|
||||
noncomputable def matrixToLin : Matrix (Fin 2) (Fin 2) ℂ →* (HiggsVec →L[ℂ] HiggsVec) where
|
||||
toFun g := LinearMap.toContinuousLinearMap
|
||||
|
@ -109,24 +120,37 @@ lemma higgsRepUnitary_mul (g : GaugeGroup) (φ : HiggsVec) :
|
|||
lemma rep_apply (g : GaugeGroup) (φ : HiggsVec) : rep g φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) :=
|
||||
higgsRepUnitary_mul g φ
|
||||
|
||||
lemma norm_invariant (g : GaugeGroup) (φ : HiggsVec) : ‖rep g φ‖ = ‖φ‖ :=
|
||||
ContinuousLinearMap.norm_map_of_mem_unitary (unitaryToLin (higgsRepUnitary g)).2 φ
|
||||
|
||||
section potentialDefn
|
||||
|
||||
variable (μSq lambda : ℝ)
|
||||
local notation "λ" => lambda
|
||||
|
||||
/-!
|
||||
|
||||
## The potential for a Higgs vector
|
||||
|
||||
-/
|
||||
|
||||
/-- The higgs potential for `higgsVec`, i.e. for constant higgs fields. -/
|
||||
def potential (φ : HiggsVec) : ℝ := - μSq * ‖φ‖ ^ 2 + λ * ‖φ‖ ^ 4
|
||||
|
||||
lemma potential_as_quad (φ : HiggsVec) :
|
||||
λ * ‖φ‖ ^ 2 * ‖φ‖ ^ 2 + (- μSq ) * ‖φ‖ ^ 2 + (- potential μSq (λ) φ) = 0 := by
|
||||
simp [potential]; ring
|
||||
|
||||
/-!
|
||||
|
||||
## Invariance of the potential under global gauge transformation
|
||||
|
||||
-/
|
||||
|
||||
lemma norm_invariant (g : GaugeGroup) (φ : HiggsVec) : ‖rep g φ‖ = ‖φ‖ :=
|
||||
ContinuousLinearMap.norm_map_of_mem_unitary (unitaryToLin (higgsRepUnitary g)).2 φ
|
||||
|
||||
lemma potential_invariant (φ : HiggsVec) (g : GaugeGroup) :
|
||||
potential μSq (λ) (rep g φ) = potential μSq (λ) φ := by
|
||||
simp only [potential, neg_mul, norm_invariant]
|
||||
|
||||
lemma potential_as_quad (φ : HiggsVec) :
|
||||
λ * ‖φ‖ ^ 2 * ‖φ‖ ^ 2 + (- μSq ) * ‖φ‖ ^ 2 + (- potential μSq (λ) φ) = 0 := by
|
||||
simp [potential]; ring
|
||||
|
||||
end potentialDefn
|
||||
section potentialProp
|
||||
|
@ -136,6 +160,12 @@ variable (μSq : ℝ)
|
|||
variable (hLam : 0 < lambda)
|
||||
local notation "λ" => lambda
|
||||
|
||||
/-!
|
||||
|
||||
## Lower bound on potential
|
||||
|
||||
-/
|
||||
|
||||
lemma potential_snd_term_nonneg (φ : HiggsVec) :
|
||||
0 ≤ λ * ‖φ‖ ^ 4 := by
|
||||
rw [mul_nonneg_iff]
|
||||
|
@ -197,6 +227,12 @@ lemma potential_bounded_below_of_μSq_nonpos {μSq : ℝ}
|
|||
field_simp [mul_nonpos_iff]
|
||||
simp_all [ge_iff_le, norm_nonneg, pow_nonneg, and_self, or_true]
|
||||
|
||||
/-!
|
||||
|
||||
## Minimum of the potential
|
||||
|
||||
-/
|
||||
|
||||
lemma potential_eq_bound_discrim_zero (φ : HiggsVec)
|
||||
(hV : potential μSq (λ) φ = - μSq ^ 2 / (4 * λ)) :
|
||||
discrim (λ) (- μSq) (- potential μSq (λ) φ) = 0 := by
|
||||
|
@ -264,6 +300,12 @@ lemma IsMinOn_potential_iff_of_μSq_nonpos {μSq : ℝ} (hμSq : μSq ≤ 0) :
|
|||
· exact potential_eq_bound_IsMinOn_of_μSq_nonpos hLam hμSq φ
|
||||
|
||||
end potentialProp
|
||||
/-!
|
||||
|
||||
## Gauge freedom
|
||||
|
||||
-/
|
||||
|
||||
/-- Given a Higgs vector, a rotation matrix which puts the first component of the
|
||||
vector to zero, and the second component to a real -/
|
||||
def rotateMatrix (φ : HiggsVec) : Matrix (Fin 2) (Fin 2) ℂ :=
|
||||
|
|
|
@ -34,6 +34,18 @@
|
|||
year = "2020"
|
||||
}
|
||||
|
||||
@Article{ ParticleDataGroup:2018ovx,
|
||||
author = "Tanabashi, M. and others",
|
||||
collaboration = "Particle Data Group",
|
||||
title = "{Review of Particle Physics}",
|
||||
doi = "10.1103/PhysRevD.98.030001",
|
||||
journal = "Phys. Rev. D",
|
||||
volume = "98",
|
||||
number = "3",
|
||||
pages = "030001",
|
||||
year = "2018"
|
||||
}
|
||||
|
||||
@Article{ raynor2021graphical,
|
||||
title = {Graphical combinatorics and a distributive law for modular
|
||||
operads},
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue