docs: Added documentation for Higgs fields

This commit is contained in:
jstoobysmith 2024-07-09 09:55:58 -04:00
parent ad8371ccae
commit e09170e115
3 changed files with 66 additions and 12 deletions

View file

@ -23,7 +23,7 @@ This file defines the basic properties for the higgs field in the standard model
## References
- We use conventions given in: https://pdg.lbl.gov/2019/reviews/rpp2019-rev-higgs-boson.pdf
- We use conventions given in: [Review of Particle Physics, PDG][ParticleDataGroup:2018ovx]
-/
universe v u

View file

@ -24,7 +24,7 @@ This file is a import of `SM.HiggsBoson.Basic`.
## References
- We use conventions given in: https://pdg.lbl.gov/2019/reviews/rpp2019-rev-higgs-boson.pdf
- We use conventions given in: [Review of Particle Physics, PDG][ParticleDataGroup:2018ovx]
-/
universe v u
@ -36,6 +36,12 @@ open Matrix
open Complex
open ComplexConjugate
/-!
## The definition of the Higgs vector space.
-/
/-- The complex vector space in which the Higgs field takes values. -/
abbrev HiggsVec := EuclideanSpace (Fin 2)
@ -50,6 +56,15 @@ lemma smooth_higgsVecToFin2 : Smooth 𝓘(, HiggsVec) 𝓘(, Fin 2 →
ContinuousLinearMap.smooth higgsVecToFin2
namespace HiggsVec
/-- An orthonormal basis of higgsVec. -/
noncomputable def orthonormBasis : OrthonormalBasis (Fin 2) HiggsVec :=
EuclideanSpace.basisFun (Fin 2)
/-!
## The representation of the gauge group on the Higgs vector space
-/
/-- The Higgs representation as a homomorphism from the gauge group to unitary `2×2`-matrices. -/
@[simps!]
@ -63,10 +78,6 @@ noncomputable def higgsRepUnitary : GaugeGroup →* unitaryGroup (Fin 2) whe
repeat rw [mul_assoc]
map_one' := by simp
/-- An orthonormal basis of higgsVec. -/
noncomputable def orthonormBasis : OrthonormalBasis (Fin 2) HiggsVec :=
EuclideanSpace.basisFun (Fin 2)
/-- Takes in a `2×2`-matrix and returns a linear map of `higgsVec`. -/
noncomputable def matrixToLin : Matrix (Fin 2) (Fin 2) →* (HiggsVec →L[] HiggsVec) where
toFun g := LinearMap.toContinuousLinearMap
@ -109,24 +120,37 @@ lemma higgsRepUnitary_mul (g : GaugeGroup) (φ : HiggsVec) :
lemma rep_apply (g : GaugeGroup) (φ : HiggsVec) : rep g φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) :=
higgsRepUnitary_mul g φ
lemma norm_invariant (g : GaugeGroup) (φ : HiggsVec) : ‖rep g φ‖ = ‖φ‖ :=
ContinuousLinearMap.norm_map_of_mem_unitary (unitaryToLin (higgsRepUnitary g)).2 φ
section potentialDefn
variable (μSq lambda : )
local notation "λ" => lambda
/-!
## The potential for a Higgs vector
-/
/-- The higgs potential for `higgsVec`, i.e. for constant higgs fields. -/
def potential (φ : HiggsVec) : := - μSq * ‖φ‖ ^ 2 + λ * ‖φ‖ ^ 4
lemma potential_as_quad (φ : HiggsVec) :
λ * ‖φ‖ ^ 2 * ‖φ‖ ^ 2 + (- μSq ) * ‖φ‖ ^ 2 + (- potential μSq (λ) φ) = 0 := by
simp [potential]; ring
/-!
## Invariance of the potential under global gauge transformation
-/
lemma norm_invariant (g : GaugeGroup) (φ : HiggsVec) : ‖rep g φ‖ = ‖φ‖ :=
ContinuousLinearMap.norm_map_of_mem_unitary (unitaryToLin (higgsRepUnitary g)).2 φ
lemma potential_invariant (φ : HiggsVec) (g : GaugeGroup) :
potential μSq (λ) (rep g φ) = potential μSq (λ) φ := by
simp only [potential, neg_mul, norm_invariant]
lemma potential_as_quad (φ : HiggsVec) :
λ * ‖φ‖ ^ 2 * ‖φ‖ ^ 2 + (- μSq ) * ‖φ‖ ^ 2 + (- potential μSq (λ) φ) = 0 := by
simp [potential]; ring
end potentialDefn
section potentialProp
@ -136,6 +160,12 @@ variable (μSq : )
variable (hLam : 0 < lambda)
local notation "λ" => lambda
/-!
## Lower bound on potential
-/
lemma potential_snd_term_nonneg (φ : HiggsVec) :
0 ≤ λ * ‖φ‖ ^ 4 := by
rw [mul_nonneg_iff]
@ -197,6 +227,12 @@ lemma potential_bounded_below_of_μSq_nonpos {μSq : }
field_simp [mul_nonpos_iff]
simp_all [ge_iff_le, norm_nonneg, pow_nonneg, and_self, or_true]
/-!
## Minimum of the potential
-/
lemma potential_eq_bound_discrim_zero (φ : HiggsVec)
(hV : potential μSq (λ) φ = - μSq ^ 2 / (4 * λ)) :
discrim (λ) (- μSq) (- potential μSq (λ) φ) = 0 := by
@ -264,6 +300,12 @@ lemma IsMinOn_potential_iff_of_μSq_nonpos {μSq : } (hμSq : μSq ≤ 0) :
· exact potential_eq_bound_IsMinOn_of_μSq_nonpos hLam hμSq φ
end potentialProp
/-!
## Gauge freedom
-/
/-- Given a Higgs vector, a rotation matrix which puts the first component of the
vector to zero, and the second component to a real -/
def rotateMatrix (φ : HiggsVec) : Matrix (Fin 2) (Fin 2) :=

View file

@ -34,6 +34,18 @@
year = "2020"
}
@Article{ ParticleDataGroup:2018ovx,
author = "Tanabashi, M. and others",
collaboration = "Particle Data Group",
title = "{Review of Particle Physics}",
doi = "10.1103/PhysRevD.98.030001",
journal = "Phys. Rev. D",
volume = "98",
number = "3",
pages = "030001",
year = "2018"
}
@Article{ raynor2021graphical,
title = {Graphical combinatorics and a distributive law for modular
operads},