refactor: Lint

This commit is contained in:
jstoobysmith 2024-10-21 16:24:16 +00:00
parent 4007f1a463
commit e180d4cca9
2 changed files with 11 additions and 10 deletions

View file

@ -782,9 +782,10 @@ def forgetLiftApp (c : C) : (lift.obj F).obj (OverColor.mk (fun (_ : Fin 1) => c
erw [PiTensorProduct.subsingletonEquiv_apply_tprod]
rfl)
lemma forgetLiftApp_hom_hom_apply_eq (c : C) (x : (lift.obj F).obj (OverColor.mk (fun (_ : Fin 1) => c)))
lemma forgetLiftApp_hom_hom_apply_eq (c : C)
(x : (lift.obj F).obj (OverColor.mk (fun (_ : Fin 1) => c)))
(y : (F.obj (Discrete.mk c)).V) :
(forgetLiftApp F c).hom.hom x = y ↔ x = PiTensorProduct.tprod k (fun _ => y) := by
(forgetLiftApp F c).hom.hom x = y ↔ x = PiTensorProduct.tprod k (fun _ => y) := by
rw [← forgetLiftAppV_symm_apply]
erw [LinearEquiv.eq_symm_apply]
rfl

View file

@ -363,10 +363,10 @@ lemma contrMap_tprod {n : } (c : Fin n.succ.succ → S.C)
-/
/-- The isomorphism of objects in `Rep S.k S.G` given an `i` in `Fin n.succ`
allowing us to undertake evaluation. -/
allowing us to undertake evaluation. -/
def evalIso {n : } (c : Fin n.succ → S.C)
(i : Fin n.succ) : S.F.obj (OverColor.mk c) ≅ (S.FDiscrete.obj (Discrete.mk (c i))) ⊗
(OverColor.lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove )) :=
(OverColor.lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove)) :=
(S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractOne i))).trans <|
(S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractOne i).symm))).trans <|
(S.F.μIso _ _).symm.trans <|
@ -377,7 +377,7 @@ def evalIso {n : } (c : Fin n.succ → S.C)
lemma evalIso_tprod {n : } {c : Fin n.succ → S.C} (i : Fin n.succ)
(x : (i : Fin n.succ) → S.FDiscrete.obj (Discrete.mk (c i))) :
(S.evalIso c i).hom.hom (PiTensorProduct.tprod S.k x) =
x i ⊗ₜ[S.k] (PiTensorProduct.tprod S.k (fun k => x (i.succAbove k))) := by
x i ⊗ₜ[S.k] (PiTensorProduct.tprod S.k (fun k => x (i.succAbove k))) := by
simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, F_def, evalIso,
Iso.trans_hom, Functor.mapIso_hom, Iso.symm_hom, tensorIso_hom, Action.comp_hom,
Action.instMonoidalCategory_tensorHom_hom, Functor.id_obj, mk_hom, ModuleCat.coe_comp,
@ -456,7 +456,7 @@ def evalLinearMap {n : } {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (
of representations. -/
def evalMap {n : } {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i))) :
(S.F.obj (OverColor.mk c)).V ⟶ (S.F.obj (OverColor.mk (c ∘ i.succAbove))).V :=
(S.evalIso c i).hom.hom ≫ ((Action.forgetMonoidal _ _ ).μIso _ _).inv
(S.evalIso c i).hom.hom ≫ ((Action.forgetMonoidal _ _).μIso _ _).inv
≫ ModuleCat.asHom (TensorProduct.map (S.evalLinearMap i e) LinearMap.id) ≫
ModuleCat.asHom (TensorProduct.lid S.k _).toLinearMap
@ -472,10 +472,10 @@ lemma evalMap_tprod {n : } {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin
Function.comp_apply, ModuleCat.coe_comp]
erw [evalIso_tprod]
change ((TensorProduct.lid S.k ↑((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove))).V))
(( (TensorProduct.map (S.evalLinearMap i e) LinearMap.id))
(((Action.forgetMonoidal (ModuleCat S.k) (MonCat.of S.G)).μIso (S.FDiscrete.obj { as := c i })
((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove)))).inv
(x i ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun k => x (i.succAbove k)))) = _
(((TensorProduct.map (S.evalLinearMap i e) LinearMap.id))
(((Action.forgetMonoidal (ModuleCat S.k) (MonCat.of S.G)).μIso (S.FDiscrete.obj { as := c i })
((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove)))).inv
(x i ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun k => x (i.succAbove k)))) = _
simp only [Nat.succ_eq_add_one, Action.forgetMonoidal_toLaxMonoidalFunctor_toFunctor,
Action.forget_obj, Action.instMonoidalCategory_tensorObj_V, MonoidalFunctor.μIso,
Action.forgetMonoidal_toLaxMonoidalFunctor_μ, asIso_inv, IsIso.inv_id, Equivalence.symm_inverse,