refactor: def of symmetric trilin function
This commit is contained in:
parent
748bcb61ae
commit
e36c61b331
24 changed files with 279 additions and 246 deletions
|
@ -115,8 +115,8 @@ lemma planeY₃B₃_quad (R : MSSMACC.AnomalyFreePerp) (a b c : ℚ) :
|
|||
|
||||
lemma planeY₃B₃_cubic (R : MSSMACC.AnomalyFreePerp) (a b c : ℚ) :
|
||||
accCube (planeY₃B₃ R a b c).val = c ^ 2 *
|
||||
(3 * a * cubeTriLin (R.val, R.val, Y₃.val)
|
||||
+ 3 * b * cubeTriLin (R.val, R.val, B₃.val) + c * cubeTriLin (R.val, R.val, R.val) ) := by
|
||||
(3 * a * cubeTriLin R.val R.val Y₃.val
|
||||
+ 3 * b * cubeTriLin R.val R.val B₃.val + c * cubeTriLin R.val R.val R.val) := by
|
||||
rw [planeY₃B₃_val]
|
||||
erw [TriLinearSymm.toCubic_add]
|
||||
erw [lineY₃B₃Charges_cubic]
|
||||
|
@ -124,7 +124,7 @@ lemma planeY₃B₃_cubic (R : MSSMACC.AnomalyFreePerp) (a b c : ℚ) :
|
|||
rw [cubeTriLin.toCubic.map_smul]
|
||||
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂]
|
||||
rw [cubeTriLin.map_add₃, cubeTriLin.map_smul₃, cubeTriLin.map_smul₃]
|
||||
rw [show (TriLinearSymm.toCubic cubeTriLin) R.val = cubeTriLin (R.val, R.val, R.val) by rfl]
|
||||
rw [show (TriLinearSymm.toCubic cubeTriLin) R.val = cubeTriLin R.val R.val R.val by rfl]
|
||||
ring
|
||||
|
||||
/-- The line in the plane spanned by $Y_3$, $B_3$ and $R$ which is in the quadratic,
|
||||
|
@ -163,18 +163,18 @@ lemma lineQuad_smul (R : MSSMACC.AnomalyFreePerp) (a b c d : ℚ) :
|
|||
|
||||
/-- A helper function to simplify following expressions. -/
|
||||
def α₁ (T : MSSMACC.AnomalyFreePerp) : ℚ :=
|
||||
(3 * cubeTriLin (T.val, T.val, B₃.val) * quadBiLin T.val T.val -
|
||||
2 * cubeTriLin (T.val, T.val, T.val) * quadBiLin B₃.val T.val)
|
||||
(3 * cubeTriLin T.val T.val B₃.val * quadBiLin T.val T.val -
|
||||
2 * cubeTriLin T.val T.val T.val * quadBiLin B₃.val T.val)
|
||||
|
||||
/-- A helper function to simplify following expressions. -/
|
||||
def α₂ (T : MSSMACC.AnomalyFreePerp) : ℚ :=
|
||||
(2 * cubeTriLin (T.val, T.val, T.val) * quadBiLin Y₃.val T.val -
|
||||
3 * cubeTriLin (T.val, T.val, Y₃.val) * quadBiLin T.val T.val)
|
||||
(2 * cubeTriLin T.val T.val T.val * quadBiLin Y₃.val T.val -
|
||||
3 * cubeTriLin T.val T.val Y₃.val * quadBiLin T.val T.val)
|
||||
|
||||
/-- A helper function to simplify following expressions. -/
|
||||
def α₃ (T : MSSMACC.AnomalyFreePerp) : ℚ :=
|
||||
6 * ((cubeTriLin (T.val, T.val, Y₃.val)) * quadBiLin B₃.val T.val -
|
||||
(cubeTriLin (T.val, T.val, B₃.val)) * quadBiLin Y₃.val T.val)
|
||||
6 * ((cubeTriLin T.val T.val Y₃.val) * quadBiLin B₃.val T.val -
|
||||
(cubeTriLin T.val T.val B₃.val) * quadBiLin Y₃.val T.val)
|
||||
|
||||
lemma lineQuad_cube (R : MSSMACC.AnomalyFreePerp) (c₁ c₂ c₃ : ℚ) :
|
||||
accCube (lineQuad R c₁ c₂ c₃).val =
|
||||
|
@ -188,9 +188,9 @@ def α₁ (T : MSSMACC.AnomalyFreePerp) : ℚ :=
|
|||
def lineCube (R : MSSMACC.AnomalyFreePerp) (a₁ a₂ a₃ : ℚ) :
|
||||
MSSMACC.LinSols :=
|
||||
planeY₃B₃ R
|
||||
(a₂ * cubeTriLin (R.val, R.val, R.val) - 3 * a₃ * cubeTriLin (R.val, R.val, B₃.val))
|
||||
(3 * a₃ * cubeTriLin (R.val, R.val, Y₃.val) - a₁ * cubeTriLin (R.val, R.val, R.val))
|
||||
(3 * (a₁ * cubeTriLin (R.val, R.val, B₃.val) - a₂ * cubeTriLin (R.val, R.val, Y₃.val)))
|
||||
(a₂ * cubeTriLin R.val R.val R.val - 3 * a₃ * cubeTriLin R.val R.val B₃.val)
|
||||
(3 * a₃ * cubeTriLin R.val R.val Y₃.val - a₁ * cubeTriLin R.val R.val R.val)
|
||||
(3 * (a₁ * cubeTriLin R.val R.val B₃.val - a₂ * cubeTriLin R.val R.val Y₃.val))
|
||||
|
||||
|
||||
lemma lineCube_smul (R : MSSMACC.AnomalyFreePerp) (a b c d : ℚ) :
|
||||
|
@ -210,7 +210,7 @@ lemma lineCube_cube (R : MSSMACC.AnomalyFreePerp) (a₁ a₂ a₃ : ℚ) :
|
|||
|
||||
lemma lineCube_quad (R : MSSMACC.AnomalyFreePerp) (a₁ a₂ a₃ : ℚ) :
|
||||
accQuad (lineCube R a₁ a₂ a₃).val =
|
||||
3 * (a₁ * cubeTriLin (R.val, R.val, B₃.val) - a₂ * cubeTriLin (R.val, R.val, Y₃.val)) *
|
||||
3 * (a₁ * cubeTriLin R.val R.val B₃.val - a₂ * cubeTriLin R.val R.val Y₃.val) *
|
||||
(α₁ R * a₁ + α₂ R * a₂ + α₃ R * a₃) := by
|
||||
erw [planeY₃B₃_quad]
|
||||
rw [α₁, α₂, α₃]
|
||||
|
@ -221,8 +221,8 @@ section proj
|
|||
|
||||
lemma α₃_proj (T : MSSMACC.Sols) : α₃ (proj T.1.1) =
|
||||
6 * dot Y₃.val B₃.val ^ 3 * (
|
||||
cubeTriLin (T.val, T.val, Y₃.val) * quadBiLin B₃.val T.val -
|
||||
cubeTriLin (T.val, T.val, B₃.val) * quadBiLin Y₃.val T.val) := by
|
||||
cubeTriLin T.val T.val Y₃.val * quadBiLin B₃.val T.val -
|
||||
cubeTriLin T.val T.val B₃.val * quadBiLin Y₃.val T.val) := by
|
||||
rw [α₃]
|
||||
rw [cube_proj_proj_Y₃, cube_proj_proj_B₃, quad_B₃_proj, quad_Y₃_proj]
|
||||
ring
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue