refactor: def of symmetric trilin function
This commit is contained in:
parent
748bcb61ae
commit
e36c61b331
24 changed files with 279 additions and 246 deletions
|
@ -33,13 +33,13 @@ open VectorLikeOddPlane
|
|||
show that this can be extended to a complete solution. -/
|
||||
def parameterizationAsLinear (g f : Fin n → ℚ) (a : ℚ) :
|
||||
(PureU1 (2 * n + 1)).LinSols :=
|
||||
a • ((accCubeTriLinSymm (P! f, P! f, P g)) • P' g +
|
||||
(- accCubeTriLinSymm (P g, P g, P! f)) • P!' f)
|
||||
a • ((accCubeTriLinSymm (P! f) (P! f) (P g)) • P' g +
|
||||
(- accCubeTriLinSymm (P g) (P g) (P! f)) • P!' f)
|
||||
|
||||
lemma parameterizationAsLinear_val (g f : Fin n → ℚ) (a : ℚ) :
|
||||
(parameterizationAsLinear g f a).val =
|
||||
a • ((accCubeTriLinSymm (P! f, P! f, P g)) • P g +
|
||||
(- accCubeTriLinSymm (P g, P g, P! f)) • P! f) := by
|
||||
a • ((accCubeTriLinSymm (P! f) (P! f) (P g)) • P g +
|
||||
(- accCubeTriLinSymm (P g) (P g) (P! f)) • P! f) := by
|
||||
rw [parameterizationAsLinear]
|
||||
change a • (_ • (P' g).val + _ • (P!' f).val) = _
|
||||
rw [P'_val, P!'_val]
|
||||
|
@ -65,8 +65,8 @@ def parameterization (g f : Fin n → ℚ) (a : ℚ) :
|
|||
|
||||
lemma anomalyFree_param {S : (PureU1 (2 * n + 1)).Sols}
|
||||
(g f : Fin n → ℚ) (hS : S.val = P g + P! f) :
|
||||
accCubeTriLinSymm (P g, P g, P! f) =
|
||||
- accCubeTriLinSymm (P! f, P! f, P g) := by
|
||||
accCubeTriLinSymm (P g) (P g) (P! f) =
|
||||
- accCubeTriLinSymm (P! f) (P! f) (P g) := by
|
||||
have hC := S.cubicSol
|
||||
rw [hS] at hC
|
||||
change (accCube (2 * n + 1)) (P g + P! f) = 0 at hC
|
||||
|
@ -79,11 +79,11 @@ lemma anomalyFree_param {S : (PureU1 (2 * n + 1)).Sols}
|
|||
In this case our parameterization above will be able to recover this point. -/
|
||||
def genericCase (S : (PureU1 (2 * n.succ + 1)).Sols) : Prop :=
|
||||
∀ (g f : Fin n.succ → ℚ) (_ : S.val = P g + P! f) ,
|
||||
accCubeTriLinSymm (P g, P g, P! f) ≠ 0
|
||||
accCubeTriLinSymm (P g) (P g) (P! f) ≠ 0
|
||||
|
||||
lemma genericCase_exists (S : (PureU1 (2 * n.succ + 1)).Sols)
|
||||
(hs : ∃ (g f : Fin n.succ → ℚ), S.val = P g + P! f ∧
|
||||
accCubeTriLinSymm (P g, P g, P! f) ≠ 0) : genericCase S := by
|
||||
accCubeTriLinSymm (P g) (P g) (P! f) ≠ 0) : genericCase S := by
|
||||
intro g f hS hC
|
||||
obtain ⟨g', f', hS', hC'⟩ := hs
|
||||
rw [hS] at hS'
|
||||
|
@ -95,11 +95,11 @@ lemma genericCase_exists (S : (PureU1 (2 * n.succ + 1)).Sols)
|
|||
In this case we will show that S is zero if it is true for all permutations. -/
|
||||
def specialCase (S : (PureU1 (2 * n.succ + 1)).Sols) : Prop :=
|
||||
∀ (g f : Fin n.succ → ℚ) (_ : S.val = P g + P! f) ,
|
||||
accCubeTriLinSymm (P g, P g, P! f) = 0
|
||||
accCubeTriLinSymm (P g) (P g) (P! f) = 0
|
||||
|
||||
lemma specialCase_exists (S : (PureU1 (2 * n.succ + 1)).Sols)
|
||||
(hs : ∃ (g f : Fin n.succ → ℚ), S.val = P g + P! f ∧
|
||||
accCubeTriLinSymm (P g, P g, P! f) = 0) : specialCase S := by
|
||||
accCubeTriLinSymm (P g) (P g) (P! f) = 0) : specialCase S := by
|
||||
intro g f hS
|
||||
obtain ⟨g', f', hS', hC'⟩ := hs
|
||||
rw [hS] at hS'
|
||||
|
@ -110,8 +110,8 @@ lemma specialCase_exists (S : (PureU1 (2 * n.succ + 1)).Sols)
|
|||
lemma generic_or_special (S : (PureU1 (2 * n.succ + 1)).Sols) :
|
||||
genericCase S ∨ specialCase S := by
|
||||
obtain ⟨g, f, h⟩ := span_basis S.1.1
|
||||
have h1 : accCubeTriLinSymm (P g, P g, P! f) ≠ 0 ∨
|
||||
accCubeTriLinSymm (P g, P g, P! f) = 0 := by
|
||||
have h1 : accCubeTriLinSymm (P g) (P g) (P! f) ≠ 0 ∨
|
||||
accCubeTriLinSymm (P g) (P g) (P! f) = 0 := by
|
||||
exact ne_or_eq _ _
|
||||
cases h1 <;> rename_i h1
|
||||
exact Or.inl (genericCase_exists S ⟨g, f, h, h1⟩)
|
||||
|
@ -120,7 +120,7 @@ lemma generic_or_special (S : (PureU1 (2 * n.succ + 1)).Sols) :
|
|||
theorem generic_case {S : (PureU1 (2 * n.succ + 1)).Sols} (h : genericCase S) :
|
||||
∃ g f a, S = parameterization g f a := by
|
||||
obtain ⟨g, f, hS⟩ := span_basis S.1.1
|
||||
use g, f, (accCubeTriLinSymm (P! f, P! f, P g))⁻¹
|
||||
use g, f, (accCubeTriLinSymm (P! f) (P! f) (P g))⁻¹
|
||||
rw [parameterization]
|
||||
apply ACCSystem.Sols.ext
|
||||
rw [parameterizationAsLinear_val]
|
||||
|
@ -149,7 +149,7 @@ lemma special_case_lineInCubic {S : (PureU1 (2 * n.succ + 1)).Sols}
|
|||
rw [h]
|
||||
rw [anomalyFree_param _ _ hS] at h
|
||||
simp at h
|
||||
change accCubeTriLinSymm (P! f, P! f, P g) = 0 at h
|
||||
change accCubeTriLinSymm (P! f) (P! f) (P g) = 0 at h
|
||||
erw [h]
|
||||
simp
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue