refactor: def of symmetric trilin function
This commit is contained in:
parent
748bcb61ae
commit
e36c61b331
24 changed files with 279 additions and 246 deletions
|
@ -295,47 +295,52 @@ lemma accQuad_ext {S T : (SMνCharges n).charges}
|
|||
|
||||
/-- The symmetric trilinear form used to define the cubic acc. -/
|
||||
@[simps!]
|
||||
def cubeTriLin : TriLinearSymm (SMνCharges n).charges where
|
||||
toFun S := ∑ i, (6 * ((Q S.1 i) * (Q S.2.1 i) * (Q S.2.2 i))
|
||||
def cubeTriLin : TriLinearSymm (SMνCharges n).charges := TriLinearSymm.mk₃
|
||||
(fun S => ∑ i, (6 * ((Q S.1 i) * (Q S.2.1 i) * (Q S.2.2 i))
|
||||
+ 3 * ((U S.1 i) * (U S.2.1 i) * (U S.2.2 i))
|
||||
+ 3 * ((D S.1 i) * (D S.2.1 i) * (D S.2.2 i))
|
||||
+ 2 * ((L S.1 i) * (L S.2.1 i) * (L S.2.2 i))
|
||||
+ ((E S.1 i) * (E S.2.1 i) * (E S.2.2 i))
|
||||
+ ((N S.1 i) * (N S.2.1 i) * (N S.2.2 i)))
|
||||
map_smul₁' a S T R := by
|
||||
+ ((N S.1 i) * (N S.2.1 i) * (N S.2.2 i))))
|
||||
(by
|
||||
intro a S T R
|
||||
simp only
|
||||
rw [Finset.mul_sum]
|
||||
apply Fintype.sum_congr
|
||||
intro i
|
||||
repeat erw [map_smul]
|
||||
simp [HSMul.hSMul, SMul.smul]
|
||||
ring
|
||||
map_add₁' S T R L := by
|
||||
ring)
|
||||
(by
|
||||
intro S T R L
|
||||
simp only
|
||||
rw [← Finset.sum_add_distrib]
|
||||
apply Fintype.sum_congr
|
||||
intro i
|
||||
repeat erw [map_add]
|
||||
simp only [ACCSystemCharges.chargesAddCommMonoid_add, toSpecies_apply, Fin.isValue]
|
||||
ring
|
||||
swap₁' S T L := by
|
||||
ring)
|
||||
(by
|
||||
intro S T L
|
||||
simp only [SMνSpecies_numberCharges, toSpecies_apply, Fin.isValue]
|
||||
apply Fintype.sum_congr
|
||||
intro i
|
||||
ring
|
||||
swap₂' S T L := by
|
||||
ring)
|
||||
(by
|
||||
intro S T L
|
||||
simp only [SMνSpecies_numberCharges, toSpecies_apply, Fin.isValue]
|
||||
apply Fintype.sum_congr
|
||||
intro i
|
||||
ring
|
||||
ring)
|
||||
|
||||
lemma cubeTriLin_decomp (S T R : (SMνCharges n).charges) :
|
||||
cubeTriLin (S, T, R) = 6 * ∑ i, (Q S i * Q T i * Q R i) + 3 * ∑ i, (U S i * U T i * U R i) +
|
||||
cubeTriLin S T R = 6 * ∑ i, (Q S i * Q T i * Q R i) + 3 * ∑ i, (U S i * U T i * U R i) +
|
||||
3 * ∑ i, (D S i * D T i * D R i) + 2 * ∑ i, (L S i * L T i * L R i) +
|
||||
∑ i, (E S i * E T i * E R i) + ∑ i, (N S i * N T i * N R i) := by
|
||||
erw [← cubeTriLin.toFun_eq_coe]
|
||||
rw [cubeTriLin]
|
||||
simp only
|
||||
simp only [TriLinearSymm.mk₃, BiLinearSymm.mk₂, SMνSpecies_numberCharges, toSpecies_apply,
|
||||
Fin.isValue, AddHom.toFun_eq_coe, AddHom.coe_mk, LinearMap.coe_mk]
|
||||
repeat erw [Finset.sum_add_distrib]
|
||||
repeat erw [← Finset.mul_sum]
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue