refactor: Move Real Lorentz vect

This commit is contained in:
jstoobysmith 2024-11-09 17:37:12 +00:00
parent 58ea861113
commit e3ad445866
9 changed files with 10 additions and 10 deletions

View file

@ -0,0 +1,331 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Lorentz.RealVector.Contraction
import Mathlib.GroupTheory.GroupAction.Blocks
/-!
# Lorentz vectors with norm one
-/
open TensorProduct
namespace Lorentz
namespace Contr
variable {d : }
/-- The set of Lorentz vectors with norm 1. -/
def NormOne (d : ) : Set (Contr d) := fun v => ⟪v, v⟫ₘ = (1 : )
noncomputable section
namespace NormOne
lemma mem_iff {v : Contr d} : v ∈ NormOne d ↔ ⟪v, v⟫ₘ = (1 : ) := by
rfl
@[simp]
lemma contr_self (v : NormOne d) : ⟪v.1, v.1⟫ₘ = (1 : ) := v.2
lemma mem_mulAction (g : LorentzGroup d) (v : Contr d) :
v ∈ NormOne d ↔ (Contr d).ρ g v ∈ NormOne d := by
rw [mem_iff, mem_iff, contrContrContractField.action_tmul]
instance : TopologicalSpace (NormOne d) := instTopologicalSpaceSubtype
variable (v w : NormOne d)
/-- The negative of a `NormOne` as a `NormOne`. -/
def neg : NormOne d := ⟨- v, by
rw [mem_iff]
simp only [Action.instMonoidalCategory_tensorUnit_V, Action.instMonoidalCategory_tensorObj_V,
CategoryTheory.Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, tmul_neg, neg_tmul, neg_neg]
exact v.2⟩
/-- The first column of a Lorentz matrix as a `NormOneLorentzVector`. -/
@[simps!]
def _root_.LorentzGroup.toNormOne (Λ : LorentzGroup d) : NormOne d :=
⟨(Contr d).ρ Λ (ContrMod.stdBasis (Sum.inl 0)), by
rw [mem_iff, contrContrContractField.action_tmul, contrContrContractField.stdBasis_inl]⟩
lemma _root_.LorentzGroup.toNormOne_inl (Λ : LorentzGroup d) :
(LorentzGroup.toNormOne Λ).val.val (Sum.inl 0) = Λ.1 (Sum.inl 0) (Sum.inl 0) := by
simp only [Fin.isValue, LorentzGroup.toNormOne_coe_val, Finsupp.single, one_ne_zero, ↓reduceIte,
Finsupp.coe_mk, Matrix.mulVec_single, mul_one]
lemma _root_.LorentzGroup.toNormOne_inr (Λ : LorentzGroup d) (i : Fin d) :
(LorentzGroup.toNormOne Λ).val.val (Sum.inr i) = Λ.1 (Sum.inr i) (Sum.inl 0) := by
simp only [LorentzGroup.toNormOne_coe_val, Finsupp.single, one_ne_zero, ↓reduceIte, Fin.isValue,
Finsupp.coe_mk, Matrix.mulVec_single, mul_one]
lemma _root_.LorentzGroup.inl_inl_mul (Λ Λ' : LorentzGroup d) : (Λ * Λ').1 (Sum.inl 0) (Sum.inl 0) =
⟪(LorentzGroup.toNormOne (LorentzGroup.transpose Λ)).1,
(Contr d).ρ LorentzGroup.parity (LorentzGroup.toNormOne Λ').1⟫ₘ := by
rw [contrContrContractField.right_parity]
simp only [Fin.isValue, lorentzGroupIsGroup_mul_coe, Matrix.mul_apply, Fintype.sum_sum_type,
Finset.univ_unique, Fin.default_eq_zero, Finset.sum_singleton,
LorentzGroup.transpose, PiLp.inner_apply, Function.comp_apply,
RCLike.inner_apply, conj_trivial]
congr
· rw [LorentzGroup.toNormOne_inl]
rfl
· rw [LorentzGroup.toNormOne_inl]
· funext x
rw [LorentzGroup.toNormOne_inr, LorentzGroup.toNormOne_inr]
rfl
lemma inl_sq : v.val.val (Sum.inl 0) ^ 2 = 1 + ‖ContrMod.toSpace v.val‖ ^ 2 := by
rw [contrContrContractField.inl_sq_eq, v.2]
congr
rw [← real_inner_self_eq_norm_sq]
simp only [PiLp.inner_apply, RCLike.inner_apply, conj_trivial]
congr
funext x
exact pow_two ((v.val).val (Sum.inr x))
lemma one_le_abs_inl : 1 ≤ |v.val.val (Sum.inl 0)| := by
have h1 := contrContrContractField.le_inl_sq v.val
rw [v.2] at h1
exact (one_le_sq_iff_one_le_abs _).mp h1
lemma inl_le_neg_one_or_one_le_inl : v.val.val (Sum.inl 0) ≤ -1 1 ≤ v.val.val (Sum.inl 0) :=
le_abs'.mp (one_le_abs_inl v)
lemma norm_space_le_abs_inl : ‖v.1.toSpace‖ < |v.val.val (Sum.inl 0)| := by
rw [(abs_norm _).symm, ← @sq_lt_sq, inl_sq]
change ‖ContrMod.toSpace v.val‖ ^ 2 < 1 + ‖ContrMod.toSpace v.val‖ ^ 2
exact lt_one_add (‖(v.1).toSpace‖ ^ 2)
lemma norm_space_leq_abs_inl : ‖v.1.toSpace‖ ≤ |v.val.val (Sum.inl 0)| :=
le_of_lt (norm_space_le_abs_inl v)
lemma inl_abs_sub_space_norm :
0 ≤ |v.val.val (Sum.inl 0)| * |w.val.val (Sum.inl 0)| - ‖v.1.toSpace‖ * ‖w.1.toSpace‖ := by
apply sub_nonneg.mpr
apply mul_le_mul (norm_space_leq_abs_inl v) (norm_space_leq_abs_inl w) ?_ ?_
· exact norm_nonneg _
· exact abs_nonneg _
/-!
# Future pointing norm one Lorentz vectors
-/
/-- The future pointing Lorentz vectors with Norm one. -/
def FuturePointing (d : ) : Set (NormOne d) :=
fun x => 0 < x.val.val (Sum.inl 0)
namespace FuturePointing
lemma mem_iff : v ∈ FuturePointing d ↔ 0 < v.val.val (Sum.inl 0) := by
rfl
lemma mem_iff_inl_nonneg : v ∈ FuturePointing d ↔ 0 ≤ v.val.val (Sum.inl 0) := by
refine Iff.intro (fun h => le_of_lt h) (fun h => ?_)
rw [mem_iff]
rcases inl_le_neg_one_or_one_le_inl v with (h | h)
· linarith
· linarith
lemma mem_iff_inl_one_le_inl : v ∈ FuturePointing d ↔ 1 ≤ v.val.val (Sum.inl 0) := by
rw [mem_iff_inl_nonneg]
refine Iff.intro (fun h => ?_) (fun h => ?_)
· rcases inl_le_neg_one_or_one_le_inl v with (h | h)
· linarith
· linarith
· linarith
lemma mem_iff_parity_mem : v ∈ FuturePointing d ↔ ⟨(Contr d).ρ LorentzGroup.parity v.1,
(NormOne.mem_mulAction _ _).mp v.2⟩ ∈ FuturePointing d := by
rw [mem_iff, mem_iff]
change _ ↔ 0 < (minkowskiMatrix.mulVec v.val.val) (Sum.inl 0)
simp only [Fin.isValue, minkowskiMatrix.mulVec_inl_0]
lemma not_mem_iff_inl_le_zero : v ∉ FuturePointing d ↔ v.val.val (Sum.inl 0) ≤ 0 := by
rw [mem_iff]
simp
lemma not_mem_iff_inl_lt_zero : v ∉ FuturePointing d ↔ v.val.val (Sum.inl 0) < 0 := by
rw [mem_iff_inl_nonneg]
simp
lemma not_mem_iff_inl_le_neg_one : v ∉ FuturePointing d ↔ v.val.val (Sum.inl 0) ≤ -1 := by
rw [not_mem_iff_inl_le_zero]
refine Iff.intro (fun h => ?_) (fun h => ?_)
· rcases inl_le_neg_one_or_one_le_inl v with (h | h)
· linarith
· linarith
· linarith
lemma not_mem_iff_neg : v ∉ FuturePointing d ↔ neg v ∈ FuturePointing d := by
rw [not_mem_iff_inl_le_zero, mem_iff_inl_nonneg]
simp only [Fin.isValue, neg]
change (v).val.val (Sum.inl 0) ≤ 0 ↔ 0 ≤ - (v.val).val (Sum.inl 0)
simp
variable (f f' : FuturePointing d)
lemma inl_nonneg : 0 ≤ f.val.val.val (Sum.inl 0):= le_of_lt f.2
lemma abs_inl : |f.val.val.val (Sum.inl 0)| = f.val.val.val (Sum.inl 0) :=
abs_of_nonneg (inl_nonneg f)
lemma inl_eq_sqrt : f.val.val.val (Sum.inl 0) = √(1 + ‖f.1.1.toSpace‖ ^ 2) := by
symm
rw [Real.sqrt_eq_cases]
apply Or.inl
rw [← inl_sq, sq]
exact ⟨rfl, inl_nonneg f⟩
open InnerProductSpace
lemma metric_nonneg : 0 ≤ ⟪f.1.1, f'.1.1⟫ₘ := by
apply le_trans (inl_abs_sub_space_norm f f'.1)
rw [abs_inl f, abs_inl f']
exact contrContrContractField.ge_sub_norm f.1.1 f'.1.1
lemma one_add_metric_non_zero : 1 + ⟪f.1.1, f'.1.1⟫ₘ ≠ 0 := by
linarith [metric_nonneg f f']
variable {v w : NormOne d}
lemma metric_reflect_mem_mem (h : v ∈ FuturePointing d) (hw : w ∈ FuturePointing d) :
0 ≤ ⟪v.val, (Contr d).ρ LorentzGroup.parity w.1⟫ₘ :=
metric_nonneg ⟨v, h⟩ ⟨⟨(Contr d).ρ LorentzGroup.parity w.1,
(NormOne.mem_mulAction _ _).mp w.2⟩, (mem_iff_parity_mem w).mp hw⟩
lemma metric_reflect_not_mem_not_mem (h : v ∉ FuturePointing d) (hw : w ∉ FuturePointing d) :
0 ≤ ⟪v.val, (Contr d).ρ LorentzGroup.parity w.1⟫ₘ := by
have h1 := metric_reflect_mem_mem ((not_mem_iff_neg v).mp h) ((not_mem_iff_neg w).mp hw)
apply le_of_le_of_eq h1 ?_
simp [neg, neg_tmul, tmul_neg]
lemma metric_reflect_mem_not_mem (h : v ∈ FuturePointing d) (hw : w ∉ FuturePointing d) :
⟪v.val, (Contr d).ρ LorentzGroup.parity w.1⟫ₘ ≤ 0 := by
rw [show (0 : ) = - 0 from zero_eq_neg.mpr rfl, le_neg]
have h1 := metric_reflect_mem_mem h ((not_mem_iff_neg w).mp hw)
apply le_of_le_of_eq h1 ?_
simp [neg, neg_tmul, tmul_neg]
lemma metric_reflect_not_mem_mem (h : v ∉ FuturePointing d) (hw : w ∈ FuturePointing d) :
⟪v.val, (Contr d).ρ LorentzGroup.parity w.1⟫ₘ ≤ 0 := by
rw [show (0 : ) = - 0 from zero_eq_neg.mpr rfl, le_neg]
have h1 := metric_reflect_mem_mem ((not_mem_iff_neg v).mp h) hw
apply le_of_le_of_eq h1 ?_
simp [neg, neg_tmul, tmul_neg]
end FuturePointing
end NormOne
namespace NormOne
namespace FuturePointing
/-!
## Topology
-/
/-- The `FuturePointing d` which has all space components zero. -/
@[simps!]
noncomputable def timeVecNormOneFuture : FuturePointing d := ⟨⟨ContrMod.stdBasis (Sum.inl 0), by
rw [NormOne.mem_iff, contrContrContractField.on_basis]
rfl⟩, by
rw [mem_iff]
simp⟩
/-- A continuous path from `timeVecNormOneFuture` to any other. -/
noncomputable def pathFromTime (u : FuturePointing d) : Path timeVecNormOneFuture u where
toFun t := ⟨
⟨{val := fun i => match i with
| Sum.inl 0 => √(1 + t ^ 2 * ‖u.1.1.toSpace‖ ^ 2)
| Sum.inr i => t * u.1.1.toSpace i},
by
rw [NormOne.mem_iff, contrContrContractField.as_sum_toSpace]
simp only [ContrMod.toSpace, Function.comp_apply, PiLp.inner_apply, RCLike.inner_apply, map_mul,
conj_trivial]
rw [Real.mul_self_sqrt, ← @real_inner_self_eq_norm_sq, @PiLp.inner_apply]
· simp only [Function.comp_apply, RCLike.inner_apply, conj_trivial]
refine Eq.symm (eq_sub_of_add_eq (congrArg (HAdd.hAdd _) ?_))
rw [Finset.mul_sum]
apply Finset.sum_congr rfl
intro i _
ring_nf
· exact Right.add_nonneg (zero_le_one' ) $ mul_nonneg (sq_nonneg _) (sq_nonneg _)⟩,
by
simp only [ContrMod.toSpace, Function.comp_apply, mem_iff_inl_nonneg, Real.sqrt_pos]
exact Real.sqrt_nonneg _⟩
continuous_toFun := by
refine Continuous.subtype_mk ?_ _
refine Continuous.subtype_mk ?_ _
refine continuous_contr _ ?_
apply (continuous_pi_iff).mpr
intro i
match i with
| Sum.inl 0 =>
continuity
| Sum.inr i =>
continuity
source' := by
ext
apply ContrMod.ext
funext i
match i with
| Sum.inl 0 =>
simp only [Set.Icc.coe_zero, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow,
zero_mul, add_zero, Real.sqrt_one, timeVecNormOneFuture, Fin.isValue,
ContrMod.stdBasis_apply_same]
| Sum.inr i =>
simp only [Set.Icc.coe_zero, zero_mul, timeVecNormOneFuture, Fin.isValue,
ContrMod.stdBasis_inl_apply_inr]
target' := by
ext
apply ContrMod.ext
funext i
match i with
| Sum.inl 0 =>
simp [Set.Icc.coe_one, one_pow, one_mul, Fin.isValue]
exact (inl_eq_sqrt u).symm
| Sum.inr i =>
simp only [Set.Icc.coe_one, one_pow, one_mul, Fin.isValue]
rfl
lemma isPathConnected : IsPathConnected (@Set.univ (FuturePointing d)) := by
use timeVecNormOneFuture
apply And.intro trivial ?_
intro y a
use pathFromTime y
exact fun _ => a
lemma metric_continuous (u : Contr d) :
Continuous (fun (a : FuturePointing d) => ⟪u, a.1.1⟫ₘ) := by
simp only [contrContrContractField.as_sum_toSpace]
refine Continuous.add ?_ ?_
· refine Continuous.comp' (continuous_mul_left _) $ Continuous.comp'
(continuous_apply (Sum.inl 0))
(Continuous.comp' ?_ ?_)
· exact continuous_iff_le_induced.mpr fun U a => a
· exact Continuous.comp' continuous_subtype_val continuous_subtype_val
· refine Continuous.comp' continuous_neg $ Continuous.inner
(Continuous.comp' (?_) continuous_const)
(Continuous.comp' (?_) (Continuous.comp'
continuous_subtype_val continuous_subtype_val))
· apply contr_continuous
exact Pi.continuous_precomp Sum.inr
· apply contr_continuous
exact Pi.continuous_precomp Sum.inr
end FuturePointing
end NormOne
end
end Contr
end Lorentz