refactor: Move Real Lorentz vect
This commit is contained in:
parent
58ea861113
commit
e3ad445866
9 changed files with 10 additions and 10 deletions
331
HepLean/Lorentz/RealVector/NormOne.lean
Normal file
331
HepLean/Lorentz/RealVector/NormOne.lean
Normal file
|
@ -0,0 +1,331 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Lorentz.RealVector.Contraction
|
||||
import Mathlib.GroupTheory.GroupAction.Blocks
|
||||
/-!
|
||||
|
||||
# Lorentz vectors with norm one
|
||||
|
||||
-/
|
||||
|
||||
open TensorProduct
|
||||
|
||||
namespace Lorentz
|
||||
|
||||
namespace Contr
|
||||
|
||||
variable {d : ℕ}
|
||||
|
||||
/-- The set of Lorentz vectors with norm 1. -/
|
||||
def NormOne (d : ℕ) : Set (Contr d) := fun v => ⟪v, v⟫ₘ = (1 : ℝ)
|
||||
|
||||
noncomputable section
|
||||
|
||||
namespace NormOne
|
||||
|
||||
lemma mem_iff {v : Contr d} : v ∈ NormOne d ↔ ⟪v, v⟫ₘ = (1 : ℝ) := by
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma contr_self (v : NormOne d) : ⟪v.1, v.1⟫ₘ = (1 : ℝ) := v.2
|
||||
|
||||
lemma mem_mulAction (g : LorentzGroup d) (v : Contr d) :
|
||||
v ∈ NormOne d ↔ (Contr d).ρ g v ∈ NormOne d := by
|
||||
rw [mem_iff, mem_iff, contrContrContractField.action_tmul]
|
||||
|
||||
instance : TopologicalSpace (NormOne d) := instTopologicalSpaceSubtype
|
||||
|
||||
variable (v w : NormOne d)
|
||||
|
||||
/-- The negative of a `NormOne` as a `NormOne`. -/
|
||||
def neg : NormOne d := ⟨- v, by
|
||||
rw [mem_iff]
|
||||
simp only [Action.instMonoidalCategory_tensorUnit_V, Action.instMonoidalCategory_tensorObj_V,
|
||||
CategoryTheory.Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj, tmul_neg, neg_tmul, neg_neg]
|
||||
exact v.2⟩
|
||||
|
||||
/-- The first column of a Lorentz matrix as a `NormOneLorentzVector`. -/
|
||||
@[simps!]
|
||||
def _root_.LorentzGroup.toNormOne (Λ : LorentzGroup d) : NormOne d :=
|
||||
⟨(Contr d).ρ Λ (ContrMod.stdBasis (Sum.inl 0)), by
|
||||
rw [mem_iff, contrContrContractField.action_tmul, contrContrContractField.stdBasis_inl]⟩
|
||||
|
||||
lemma _root_.LorentzGroup.toNormOne_inl (Λ : LorentzGroup d) :
|
||||
(LorentzGroup.toNormOne Λ).val.val (Sum.inl 0) = Λ.1 (Sum.inl 0) (Sum.inl 0) := by
|
||||
simp only [Fin.isValue, LorentzGroup.toNormOne_coe_val, Finsupp.single, one_ne_zero, ↓reduceIte,
|
||||
Finsupp.coe_mk, Matrix.mulVec_single, mul_one]
|
||||
|
||||
lemma _root_.LorentzGroup.toNormOne_inr (Λ : LorentzGroup d) (i : Fin d) :
|
||||
(LorentzGroup.toNormOne Λ).val.val (Sum.inr i) = Λ.1 (Sum.inr i) (Sum.inl 0) := by
|
||||
simp only [LorentzGroup.toNormOne_coe_val, Finsupp.single, one_ne_zero, ↓reduceIte, Fin.isValue,
|
||||
Finsupp.coe_mk, Matrix.mulVec_single, mul_one]
|
||||
|
||||
lemma _root_.LorentzGroup.inl_inl_mul (Λ Λ' : LorentzGroup d) : (Λ * Λ').1 (Sum.inl 0) (Sum.inl 0) =
|
||||
⟪(LorentzGroup.toNormOne (LorentzGroup.transpose Λ)).1,
|
||||
(Contr d).ρ LorentzGroup.parity (LorentzGroup.toNormOne Λ').1⟫ₘ := by
|
||||
rw [contrContrContractField.right_parity]
|
||||
simp only [Fin.isValue, lorentzGroupIsGroup_mul_coe, Matrix.mul_apply, Fintype.sum_sum_type,
|
||||
Finset.univ_unique, Fin.default_eq_zero, Finset.sum_singleton,
|
||||
LorentzGroup.transpose, PiLp.inner_apply, Function.comp_apply,
|
||||
RCLike.inner_apply, conj_trivial]
|
||||
congr
|
||||
· rw [LorentzGroup.toNormOne_inl]
|
||||
rfl
|
||||
· rw [LorentzGroup.toNormOne_inl]
|
||||
· funext x
|
||||
rw [LorentzGroup.toNormOne_inr, LorentzGroup.toNormOne_inr]
|
||||
rfl
|
||||
|
||||
lemma inl_sq : v.val.val (Sum.inl 0) ^ 2 = 1 + ‖ContrMod.toSpace v.val‖ ^ 2 := by
|
||||
rw [contrContrContractField.inl_sq_eq, v.2]
|
||||
congr
|
||||
rw [← real_inner_self_eq_norm_sq]
|
||||
simp only [PiLp.inner_apply, RCLike.inner_apply, conj_trivial]
|
||||
congr
|
||||
funext x
|
||||
exact pow_two ((v.val).val (Sum.inr x))
|
||||
|
||||
lemma one_le_abs_inl : 1 ≤ |v.val.val (Sum.inl 0)| := by
|
||||
have h1 := contrContrContractField.le_inl_sq v.val
|
||||
rw [v.2] at h1
|
||||
exact (one_le_sq_iff_one_le_abs _).mp h1
|
||||
|
||||
lemma inl_le_neg_one_or_one_le_inl : v.val.val (Sum.inl 0) ≤ -1 ∨ 1 ≤ v.val.val (Sum.inl 0) :=
|
||||
le_abs'.mp (one_le_abs_inl v)
|
||||
|
||||
lemma norm_space_le_abs_inl : ‖v.1.toSpace‖ < |v.val.val (Sum.inl 0)| := by
|
||||
rw [(abs_norm _).symm, ← @sq_lt_sq, inl_sq]
|
||||
change ‖ContrMod.toSpace v.val‖ ^ 2 < 1 + ‖ContrMod.toSpace v.val‖ ^ 2
|
||||
exact lt_one_add (‖(v.1).toSpace‖ ^ 2)
|
||||
|
||||
lemma norm_space_leq_abs_inl : ‖v.1.toSpace‖ ≤ |v.val.val (Sum.inl 0)| :=
|
||||
le_of_lt (norm_space_le_abs_inl v)
|
||||
|
||||
lemma inl_abs_sub_space_norm :
|
||||
0 ≤ |v.val.val (Sum.inl 0)| * |w.val.val (Sum.inl 0)| - ‖v.1.toSpace‖ * ‖w.1.toSpace‖ := by
|
||||
apply sub_nonneg.mpr
|
||||
apply mul_le_mul (norm_space_leq_abs_inl v) (norm_space_leq_abs_inl w) ?_ ?_
|
||||
· exact norm_nonneg _
|
||||
· exact abs_nonneg _
|
||||
|
||||
/-!
|
||||
|
||||
# Future pointing norm one Lorentz vectors
|
||||
|
||||
-/
|
||||
|
||||
/-- The future pointing Lorentz vectors with Norm one. -/
|
||||
def FuturePointing (d : ℕ) : Set (NormOne d) :=
|
||||
fun x => 0 < x.val.val (Sum.inl 0)
|
||||
|
||||
namespace FuturePointing
|
||||
|
||||
lemma mem_iff : v ∈ FuturePointing d ↔ 0 < v.val.val (Sum.inl 0) := by
|
||||
rfl
|
||||
|
||||
lemma mem_iff_inl_nonneg : v ∈ FuturePointing d ↔ 0 ≤ v.val.val (Sum.inl 0) := by
|
||||
refine Iff.intro (fun h => le_of_lt h) (fun h => ?_)
|
||||
rw [mem_iff]
|
||||
rcases inl_le_neg_one_or_one_le_inl v with (h | h)
|
||||
· linarith
|
||||
· linarith
|
||||
|
||||
lemma mem_iff_inl_one_le_inl : v ∈ FuturePointing d ↔ 1 ≤ v.val.val (Sum.inl 0) := by
|
||||
rw [mem_iff_inl_nonneg]
|
||||
refine Iff.intro (fun h => ?_) (fun h => ?_)
|
||||
· rcases inl_le_neg_one_or_one_le_inl v with (h | h)
|
||||
· linarith
|
||||
· linarith
|
||||
· linarith
|
||||
|
||||
lemma mem_iff_parity_mem : v ∈ FuturePointing d ↔ ⟨(Contr d).ρ LorentzGroup.parity v.1,
|
||||
(NormOne.mem_mulAction _ _).mp v.2⟩ ∈ FuturePointing d := by
|
||||
rw [mem_iff, mem_iff]
|
||||
change _ ↔ 0 < (minkowskiMatrix.mulVec v.val.val) (Sum.inl 0)
|
||||
simp only [Fin.isValue, minkowskiMatrix.mulVec_inl_0]
|
||||
|
||||
|
||||
lemma not_mem_iff_inl_le_zero : v ∉ FuturePointing d ↔ v.val.val (Sum.inl 0) ≤ 0 := by
|
||||
rw [mem_iff]
|
||||
simp
|
||||
|
||||
lemma not_mem_iff_inl_lt_zero : v ∉ FuturePointing d ↔ v.val.val (Sum.inl 0) < 0 := by
|
||||
rw [mem_iff_inl_nonneg]
|
||||
simp
|
||||
|
||||
lemma not_mem_iff_inl_le_neg_one : v ∉ FuturePointing d ↔ v.val.val (Sum.inl 0) ≤ -1 := by
|
||||
rw [not_mem_iff_inl_le_zero]
|
||||
refine Iff.intro (fun h => ?_) (fun h => ?_)
|
||||
· rcases inl_le_neg_one_or_one_le_inl v with (h | h)
|
||||
· linarith
|
||||
· linarith
|
||||
· linarith
|
||||
|
||||
lemma not_mem_iff_neg : v ∉ FuturePointing d ↔ neg v ∈ FuturePointing d := by
|
||||
rw [not_mem_iff_inl_le_zero, mem_iff_inl_nonneg]
|
||||
simp only [Fin.isValue, neg]
|
||||
change (v).val.val (Sum.inl 0) ≤ 0 ↔ 0 ≤ - (v.val).val (Sum.inl 0)
|
||||
simp
|
||||
|
||||
variable (f f' : FuturePointing d)
|
||||
|
||||
lemma inl_nonneg : 0 ≤ f.val.val.val (Sum.inl 0):= le_of_lt f.2
|
||||
|
||||
lemma abs_inl : |f.val.val.val (Sum.inl 0)| = f.val.val.val (Sum.inl 0) :=
|
||||
abs_of_nonneg (inl_nonneg f)
|
||||
|
||||
lemma inl_eq_sqrt : f.val.val.val (Sum.inl 0) = √(1 + ‖f.1.1.toSpace‖ ^ 2) := by
|
||||
symm
|
||||
rw [Real.sqrt_eq_cases]
|
||||
apply Or.inl
|
||||
rw [← inl_sq, sq]
|
||||
exact ⟨rfl, inl_nonneg f⟩
|
||||
|
||||
open InnerProductSpace
|
||||
lemma metric_nonneg : 0 ≤ ⟪f.1.1, f'.1.1⟫ₘ := by
|
||||
apply le_trans (inl_abs_sub_space_norm f f'.1)
|
||||
rw [abs_inl f, abs_inl f']
|
||||
exact contrContrContractField.ge_sub_norm f.1.1 f'.1.1
|
||||
|
||||
lemma one_add_metric_non_zero : 1 + ⟪f.1.1, f'.1.1⟫ₘ ≠ 0 := by
|
||||
linarith [metric_nonneg f f']
|
||||
|
||||
variable {v w : NormOne d}
|
||||
|
||||
lemma metric_reflect_mem_mem (h : v ∈ FuturePointing d) (hw : w ∈ FuturePointing d) :
|
||||
0 ≤ ⟪v.val, (Contr d).ρ LorentzGroup.parity w.1⟫ₘ :=
|
||||
metric_nonneg ⟨v, h⟩ ⟨⟨(Contr d).ρ LorentzGroup.parity w.1,
|
||||
(NormOne.mem_mulAction _ _).mp w.2⟩, (mem_iff_parity_mem w).mp hw⟩
|
||||
|
||||
lemma metric_reflect_not_mem_not_mem (h : v ∉ FuturePointing d) (hw : w ∉ FuturePointing d) :
|
||||
0 ≤ ⟪v.val, (Contr d).ρ LorentzGroup.parity w.1⟫ₘ := by
|
||||
have h1 := metric_reflect_mem_mem ((not_mem_iff_neg v).mp h) ((not_mem_iff_neg w).mp hw)
|
||||
apply le_of_le_of_eq h1 ?_
|
||||
simp [neg, neg_tmul, tmul_neg]
|
||||
|
||||
lemma metric_reflect_mem_not_mem (h : v ∈ FuturePointing d) (hw : w ∉ FuturePointing d) :
|
||||
⟪v.val, (Contr d).ρ LorentzGroup.parity w.1⟫ₘ ≤ 0 := by
|
||||
rw [show (0 : ℝ) = - 0 from zero_eq_neg.mpr rfl, le_neg]
|
||||
have h1 := metric_reflect_mem_mem h ((not_mem_iff_neg w).mp hw)
|
||||
apply le_of_le_of_eq h1 ?_
|
||||
simp [neg, neg_tmul, tmul_neg]
|
||||
|
||||
lemma metric_reflect_not_mem_mem (h : v ∉ FuturePointing d) (hw : w ∈ FuturePointing d) :
|
||||
⟪v.val, (Contr d).ρ LorentzGroup.parity w.1⟫ₘ ≤ 0 := by
|
||||
rw [show (0 : ℝ) = - 0 from zero_eq_neg.mpr rfl, le_neg]
|
||||
have h1 := metric_reflect_mem_mem ((not_mem_iff_neg v).mp h) hw
|
||||
apply le_of_le_of_eq h1 ?_
|
||||
simp [neg, neg_tmul, tmul_neg]
|
||||
|
||||
end FuturePointing
|
||||
|
||||
end NormOne
|
||||
|
||||
namespace NormOne
|
||||
namespace FuturePointing
|
||||
/-!
|
||||
## Topology
|
||||
-/
|
||||
|
||||
|
||||
/-- The `FuturePointing d` which has all space components zero. -/
|
||||
@[simps!]
|
||||
noncomputable def timeVecNormOneFuture : FuturePointing d := ⟨⟨ContrMod.stdBasis (Sum.inl 0), by
|
||||
rw [NormOne.mem_iff, contrContrContractField.on_basis]
|
||||
rfl⟩, by
|
||||
rw [mem_iff]
|
||||
simp⟩
|
||||
|
||||
/-- A continuous path from `timeVecNormOneFuture` to any other. -/
|
||||
noncomputable def pathFromTime (u : FuturePointing d) : Path timeVecNormOneFuture u where
|
||||
toFun t := ⟨
|
||||
⟨{val := fun i => match i with
|
||||
| Sum.inl 0 => √(1 + t ^ 2 * ‖u.1.1.toSpace‖ ^ 2)
|
||||
| Sum.inr i => t * u.1.1.toSpace i},
|
||||
by
|
||||
rw [NormOne.mem_iff, contrContrContractField.as_sum_toSpace]
|
||||
simp only [ContrMod.toSpace, Function.comp_apply, PiLp.inner_apply, RCLike.inner_apply, map_mul,
|
||||
conj_trivial]
|
||||
rw [Real.mul_self_sqrt, ← @real_inner_self_eq_norm_sq, @PiLp.inner_apply]
|
||||
· simp only [Function.comp_apply, RCLike.inner_apply, conj_trivial]
|
||||
refine Eq.symm (eq_sub_of_add_eq (congrArg (HAdd.hAdd _) ?_))
|
||||
rw [Finset.mul_sum]
|
||||
apply Finset.sum_congr rfl
|
||||
intro i _
|
||||
ring_nf
|
||||
· exact Right.add_nonneg (zero_le_one' ℝ) $ mul_nonneg (sq_nonneg _) (sq_nonneg _)⟩,
|
||||
by
|
||||
simp only [ContrMod.toSpace, Function.comp_apply, mem_iff_inl_nonneg, Real.sqrt_pos]
|
||||
exact Real.sqrt_nonneg _⟩
|
||||
continuous_toFun := by
|
||||
refine Continuous.subtype_mk ?_ _
|
||||
refine Continuous.subtype_mk ?_ _
|
||||
refine continuous_contr _ ?_
|
||||
apply (continuous_pi_iff).mpr
|
||||
intro i
|
||||
match i with
|
||||
| Sum.inl 0 =>
|
||||
continuity
|
||||
| Sum.inr i =>
|
||||
continuity
|
||||
source' := by
|
||||
ext
|
||||
apply ContrMod.ext
|
||||
funext i
|
||||
match i with
|
||||
| Sum.inl 0 =>
|
||||
simp only [Set.Icc.coe_zero, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow,
|
||||
zero_mul, add_zero, Real.sqrt_one, timeVecNormOneFuture, Fin.isValue,
|
||||
ContrMod.stdBasis_apply_same]
|
||||
| Sum.inr i =>
|
||||
simp only [Set.Icc.coe_zero, zero_mul, timeVecNormOneFuture, Fin.isValue,
|
||||
ContrMod.stdBasis_inl_apply_inr]
|
||||
target' := by
|
||||
ext
|
||||
apply ContrMod.ext
|
||||
funext i
|
||||
match i with
|
||||
| Sum.inl 0 =>
|
||||
simp [Set.Icc.coe_one, one_pow, one_mul, Fin.isValue]
|
||||
exact (inl_eq_sqrt u).symm
|
||||
| Sum.inr i =>
|
||||
simp only [Set.Icc.coe_one, one_pow, one_mul, Fin.isValue]
|
||||
rfl
|
||||
|
||||
lemma isPathConnected : IsPathConnected (@Set.univ (FuturePointing d)) := by
|
||||
use timeVecNormOneFuture
|
||||
apply And.intro trivial ?_
|
||||
intro y a
|
||||
use pathFromTime y
|
||||
exact fun _ => a
|
||||
|
||||
lemma metric_continuous (u : Contr d) :
|
||||
Continuous (fun (a : FuturePointing d) => ⟪u, a.1.1⟫ₘ) := by
|
||||
simp only [contrContrContractField.as_sum_toSpace]
|
||||
refine Continuous.add ?_ ?_
|
||||
· refine Continuous.comp' (continuous_mul_left _) $ Continuous.comp'
|
||||
(continuous_apply (Sum.inl 0))
|
||||
(Continuous.comp' ?_ ?_)
|
||||
· exact continuous_iff_le_induced.mpr fun U a => a
|
||||
· exact Continuous.comp' continuous_subtype_val continuous_subtype_val
|
||||
· refine Continuous.comp' continuous_neg $ Continuous.inner
|
||||
(Continuous.comp' (?_) continuous_const)
|
||||
(Continuous.comp' (?_) (Continuous.comp'
|
||||
continuous_subtype_val continuous_subtype_val))
|
||||
· apply contr_continuous
|
||||
exact Pi.continuous_precomp Sum.inr
|
||||
· apply contr_continuous
|
||||
exact Pi.continuous_precomp Sum.inr
|
||||
|
||||
end FuturePointing
|
||||
|
||||
end NormOne
|
||||
|
||||
end
|
||||
|
||||
end Contr
|
||||
end Lorentz
|
Loading…
Add table
Add a link
Reference in a new issue