refactor: Lint
This commit is contained in:
parent
92cca4c6df
commit
e40172ce5a
4 changed files with 43 additions and 18 deletions
|
@ -16,7 +16,6 @@ We define the Lorentz group.
|
|||
|
||||
-/
|
||||
/-! TODO: Show that the Lorentz is a Lie group. -/
|
||||
/-! TODO: Prove restricted Lorentz group equivalent to connected component of identity. -/
|
||||
|
||||
noncomputable section
|
||||
|
||||
|
|
|
@ -7,7 +7,9 @@ import HepLean.SpaceTime.LorentzGroup.Basic
|
|||
/-!
|
||||
# The Proper Lorentz Group
|
||||
|
||||
We define the give a series of lemmas related to the determinant of the lorentz group.
|
||||
The proper Lorentz group is the subgroup of the Lorentz group with determinant `1`.
|
||||
|
||||
We define the give a series of lemmas related to the determinant of the Lorentz group.
|
||||
|
||||
-/
|
||||
|
||||
|
@ -23,7 +25,7 @@ open minkowskiMetric
|
|||
|
||||
variable {d : ℕ}
|
||||
|
||||
/-- The determinant of a member of the lorentz group is `1` or `-1`. -/
|
||||
/-- The determinant of a member of the Lorentz group is `1` or `-1`. -/
|
||||
lemma det_eq_one_or_neg_one (Λ : 𝓛 d) : Λ.1.det = 1 ∨ Λ.1.det = -1 := by
|
||||
have h1 := (congrArg det ((mem_iff_self_mul_dual).mp Λ.2))
|
||||
simp [det_mul, det_dual] at h1
|
||||
|
@ -47,7 +49,7 @@ def coeForℤ₂ : C(({-1, 1} : Set ℝ), ℤ₂) where
|
|||
haveI : DiscreteTopology ({-1, 1} : Set ℝ) := discrete_of_t1_of_finite
|
||||
exact continuous_of_discreteTopology
|
||||
|
||||
/-- The continuous map taking a lorentz matrix to its determinant. -/
|
||||
/-- The continuous map taking a Lorentz matrix to its determinant. -/
|
||||
def detContinuous : C(𝓛 d, ℤ₂) :=
|
||||
ContinuousMap.comp coeForℤ₂ {
|
||||
toFun := fun Λ => ⟨Λ.1.det, Or.symm (LorentzGroup.det_eq_one_or_neg_one _)⟩,
|
||||
|
@ -73,7 +75,7 @@ lemma detContinuous_eq_iff_det_eq (Λ Λ' : LorentzGroup d) :
|
|||
· intro h
|
||||
simp [detContinuous, h]
|
||||
|
||||
/-- The representation taking a lorentz matrix to its determinant. -/
|
||||
/-- The representation taking a Lorentz matrix to its determinant. -/
|
||||
@[simps!]
|
||||
def detRep : 𝓛 d →* ℤ₂ where
|
||||
toFun Λ := detContinuous Λ
|
||||
|
|
14
HepLean/SpaceTime/LorentzGroup/Restricted.lean
Normal file
14
HepLean/SpaceTime/LorentzGroup/Restricted.lean
Normal file
|
@ -0,0 +1,14 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
/-!
|
||||
# The Restricted Lorentz Group
|
||||
|
||||
This file is currently a stub.
|
||||
|
||||
-/
|
||||
/-! TODO: Add definition of the restricted Lorentz group. -/
|
||||
/-! TODO: Prove member of the restricted Lorentz group is combo of boost and rotation. -/
|
||||
/-! TODO: Prove restricted Lorentz group equivalent to connected component of identity. -/
|
|
@ -3,8 +3,9 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.SpaceTime.LorentzVector.Basic
|
||||
import Mathlib.CategoryTheory.Limits.FintypeCat
|
||||
import Mathlib.Logic.Function.CompTypeclasses
|
||||
import Mathlib.Data.Real.Basic
|
||||
import Mathlib.CategoryTheory.FintypeCat
|
||||
/-!
|
||||
|
||||
# Lorentz Tensors
|
||||
|
@ -14,25 +15,26 @@ In this file we define real Lorentz tensors.
|
|||
We implicitly follow the definition of a modular operad.
|
||||
This will relation should be made explicit in the future.
|
||||
|
||||
|
||||
## References
|
||||
|
||||
-- For modular operads see: [Raynor][raynor2021graphical]
|
||||
|
||||
-/
|
||||
/-! TODO: Do complex tensors, with Van der Waerden notation for fermions. -/
|
||||
|
||||
/-! TODO: Generalize to maps into Lorentz tensors. -/
|
||||
/-!
|
||||
|
||||
## Real Lorentz tensors
|
||||
|
||||
-/
|
||||
|
||||
/-- An index of a real Lorentz tensor is up or down. -/
|
||||
/-- The possible `colors` of an index for a RealLorentzTensor.
|
||||
There are two possiblities, `up` and `down`. -/
|
||||
inductive RealLorentzTensor.Colors where
|
||||
| up : RealLorentzTensor.Colors
|
||||
| down : RealLorentzTensor.Colors
|
||||
|
||||
/-- The association of colors with indices. For up and down this is `Fin 1 ⊕ Fin d`.-/
|
||||
def RealLorentzTensor.ColorsIndex (d : ℕ) (μ : RealLorentzTensor.Colors) : Type :=
|
||||
match μ with
|
||||
| RealLorentzTensor.Colors.up => Fin 1 ⊕ Fin d
|
||||
|
@ -40,11 +42,12 @@ def RealLorentzTensor.ColorsIndex (d : ℕ) (μ : RealLorentzTensor.Colors) : Ty
|
|||
|
||||
/-- A Lorentz Tensor defined by its coordinate map. -/
|
||||
structure RealLorentzTensor (d : ℕ) (X : FintypeCat) where
|
||||
/-- The color associated to each index of the tensor. -/
|
||||
color : X → RealLorentzTensor.Colors
|
||||
/-- The coordinate map for the tensor. -/
|
||||
coord : ((x : X) → RealLorentzTensor.ColorsIndex d (color x)) → ℝ
|
||||
|
||||
namespace RealLorentzTensor
|
||||
open BigOperators
|
||||
open CategoryTheory
|
||||
universe u1
|
||||
variable {d : ℕ} {X Y Z : FintypeCat.{u1}}
|
||||
|
@ -61,7 +64,7 @@ lemma indexType_eq {T₁ T₂ : RealLorentzTensor d X} (h : T₁.color = T₂.co
|
|||
rw [h]
|
||||
|
||||
lemma ext {T₁ T₂ : RealLorentzTensor d X} (h : T₁.color = T₂.color)
|
||||
(h' : T₁.coord = T₂.coord ∘ Equiv.cast (indexType_eq h)) : T₁ = T₂ := by
|
||||
(h' : T₁.coord = T₂.coord ∘ Equiv.cast (indexType_eq h)) : T₁ = T₂ := by
|
||||
cases T₁
|
||||
cases T₂
|
||||
simp_all only [IndexType, mk.injEq]
|
||||
|
@ -91,18 +94,17 @@ def ch {X : FintypeCat} (x : X) (T : RealLorentzTensor d X) : Colors := T.color
|
|||
|
||||
-/
|
||||
|
||||
/- An equivalence between `X → Fin 1 ⊕ Fin d` and `Y → Fin 1 ⊕ Fin d` given an isomorphism
|
||||
/-- An equivalence between `X → Fin 1 ⊕ Fin d` and `Y → Fin 1 ⊕ Fin d` given an isomorphism
|
||||
between `X` and `Y`. -/
|
||||
@[simps!]
|
||||
def congrSetIndexType (d : ℕ) (f : X ≃ Y) (i : X → Colors) :
|
||||
((x : X) → ColorsIndex d (i x)) ≃ ((y : Y) → ColorsIndex d ((Equiv.piCongrLeft' _ f) i y)) :=
|
||||
((x : X) → ColorsIndex d (i x)) ≃ ((y : Y) → ColorsIndex d ((Equiv.piCongrLeft' _ f) i y)) :=
|
||||
Equiv.piCongrLeft' _ (f)
|
||||
|
||||
/-- Given an equivalence of indexing sets, a map on Lorentz tensors. -/
|
||||
@[simps!]
|
||||
def congrSetMap (f : X ≃ Y) (T : RealLorentzTensor d X) : RealLorentzTensor d Y where
|
||||
color := (Equiv.piCongrLeft' _ f) T.color
|
||||
coord := (Equiv.piCongrLeft' _ (congrSetIndexType d f T.color)) T.coord
|
||||
color := (Equiv.piCongrLeft' _ f) T.color
|
||||
coord := (Equiv.piCongrLeft' _ (congrSetIndexType d f T.color)) T.coord
|
||||
|
||||
lemma congrSetMap_trans (f : X ≃ Y) (g : Y ≃ Z) (T : RealLorentzTensor d X) :
|
||||
congrSetMap g (congrSetMap f T) = congrSetMap (f.trans g) T := by
|
||||
|
@ -164,11 +166,19 @@ Rising or lowering an index corresponds to changing the color of that index.
|
|||
|
||||
/-!
|
||||
|
||||
## Action of the Lorentz group
|
||||
|
||||
-/
|
||||
|
||||
/-! TODO: Define the action of the Lorentz group on the sets of Tensors. -/
|
||||
|
||||
/-!
|
||||
|
||||
## Graphical species and Lorentz tensors
|
||||
|
||||
-/
|
||||
|
||||
/-! TODO: From Lorentz tensors graphical species. -/
|
||||
/-! TODO: Show that the action of the Lorentz group defines an action on the graphical species. -/
|
||||
|
||||
|
||||
end RealLorentzTensor
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue