refactor: Delete unused files

This commit is contained in:
jstoobysmith 2024-08-15 07:30:12 -04:00
parent d419a17448
commit e458300359
15 changed files with 37 additions and 2888 deletions

View file

@ -1,223 +0,0 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzTensor.IndexNotation.DualIndex
/-!
# Dual indices
-/
namespace IndexNotation
namespace IndexList
variable {X : Type} [IndexNotation X] [Fintype X] [DecidableEq X]
variable (l l2 : IndexList X)
def getDual? (i : Fin l.length) : Option (Fin l.length) :=
Fin.find (fun j => i ≠ j ∧ l.idMap i = l.idMap j)
def getDualInOther? (i : Fin l.length) : Option (Fin l2.length) :=
Fin.find (fun j => l.idMap i = l2.idMap j)
/-!
## Finite sets of duals
-/
def withDual : Finset (Fin l.length) :=
Finset.filter (fun i => (l.getDual? i).isSome) Finset.univ
def getDual (i : l.withDual) : Fin l.length :=
(l.getDual? i).get (by simpa [withDual] using i.2)
def withoutDual : Finset (Fin l.length) :=
Finset.filter (fun i => (l.getDual? i).isNone) Finset.univ
def withDualOther : Finset (Fin l.length) :=
Finset.filter (fun i => (l.getDualInOther? l2 i).isSome) Finset.univ
def withoutDualOther : Finset (Fin l.length) :=
Finset.filter (fun i => (l.getDualInOther? l2 i).isNone) Finset.univ
lemma withDual_disjoint_withoutDual : Disjoint l.withDual l.withoutDual := by
rw [Finset.disjoint_iff_ne]
intro a ha b hb
by_contra hn
subst hn
simp_all only [withDual, Finset.mem_filter, Finset.mem_univ, true_and, withoutDual,
Option.isNone_iff_eq_none, Option.isSome_none, Bool.false_eq_true]
lemma withDual_union_withoutDual : l.withDual l.withoutDual = Finset.univ := by
rw [Finset.eq_univ_iff_forall]
intro i
by_cases h : (l.getDual? i).isSome
· simp [withDual, Finset.mem_filter, Finset.mem_univ, h]
· simp at h
simp [withoutDual, Finset.mem_filter, Finset.mem_univ, h]
lemma withDualOther_disjoint_withoutDualOther :
Disjoint (l.withDualOther l2) (l.withoutDualOther l2) := by
rw [Finset.disjoint_iff_ne]
intro a ha b hb
by_contra hn
subst hn
simp_all only [withDualOther, Finset.mem_filter, Finset.mem_univ, true_and, withoutDualOther,
Option.isNone_iff_eq_none, Option.isSome_none, Bool.false_eq_true]
lemma withDualOther_union_withoutDualOther :
l.withDualOther l2 l.withoutDualOther l2 = Finset.univ := by
rw [Finset.eq_univ_iff_forall]
intro i
by_cases h : (l.getDualInOther? l2 i).isSome
· simp [withDualOther, Finset.mem_filter, Finset.mem_univ, h]
· simp at h
simp [withoutDualOther, Finset.mem_filter, Finset.mem_univ, h]
def dualEquiv : l.withDual ⊕ l.withoutDual ≃ Fin l.length :=
(Equiv.Finset.union _ _ l.withDual_disjoint_withoutDual).trans <|
Equiv.subtypeUnivEquiv (Finset.eq_univ_iff_forall.mp l.withDual_union_withoutDual)
def dualEquivOther : l.withDualOther l2 ⊕ l.withoutDualOther l2 ≃ Fin l.length :=
(Equiv.Finset.union _ _ (l.withDualOther_disjoint_withoutDualOther l2)).trans
(Equiv.subtypeUnivEquiv
(Finset.eq_univ_iff_forall.mp (l.withDualOther_union_withoutDualOther l2)))
/-!
## Index lists where `getDual?` is invertiable.
-/
def InverDual : Prop :=
∀ i, (l.getDual? i).bind l.getDual? = some i
namespace InverDual
variable {l : IndexList X} (h : l.InverDual) (i : Fin l.length)
end InverDual
def InverDualOther : Prop :=
∀ i, (l.getDualInOther? l2 i).bind (l2.getDualInOther? l) = some i
∧ ∀ i, (l2.getDualInOther? l i).bind (l.getDualInOther? l2) = some i
section Color
variable {𝓒 : TensorColor}
variable [IndexNotation 𝓒.Color] [Fintype 𝓒.Color] [DecidableEq 𝓒.Color]
variable (l l2 : IndexList 𝓒.Color)
/-!
## Has single dual of correct color
-/
def IndexListColor (𝓒 : TensorColor) [IndexNotation 𝓒.Color] : Type := {l : IndexList X //
∀ i, (l.getDual? i).bind l.getDual? = some i ∧
Option.map (l.colorMap) ∘ l.getDual? = Option.map ()
}
end color
/-!
## Append relations
-/
@[simp]
lemma getDual_append_inl (i : Fin l.length) : (l ++ l2).getDual (appendEquiv (Sum.inl i)) =
Option.or (Option.map (appendEquiv ∘ Sum.inl) (l.getDual i))
(Option.map (appendEquiv ∘ Sum.inr) (l.getDualOther l2 i)) := by
by_cases h : (l ++ l2).HasDualInSelf (appendEquiv (Sum.inl i))
· rw [(l ++ l2).getDual_of_hasDualInSelf h]
by_cases hl : l.HasDualInSelf i
· rw [l.getDual_of_hasDualInSelf hl]
simp
exact HasDualInSelf.getFirst_append_inl_of_hasDualInSelf l l2 h hl
· rw [l.getDual_of_not_hasDualInSelf hl]
simp at h hl
simp_all
rw [l.getDualOther_of_hasDualInOther l2 h]
simp only [Option.map_some', Function.comp_apply]
· rw [(l ++ l2).getDual_of_not_hasDualInSelf h]
simp at h
rw [l.getDual_of_not_hasDualInSelf h.1]
rw [l.getDualOther_of_not_hasDualInOther l2 h.2]
rfl
@[simp]
lemma getDual_append_inr (i : Fin l2.length) : (l ++ l2).getDual (appendEquiv (Sum.inr i)) =
Option.or (Option.map (appendEquiv ∘ Sum.inl) (l2.getDualOther l i))
(Option.map (appendEquiv ∘ Sum.inr) (l2.getDual i)) := by
by_cases h : (l ++ l2).HasDualInSelf (appendEquiv (Sum.inr i))
· rw [(l ++ l2).getDual_of_hasDualInSelf h]
by_cases hl1 : l2.HasDualInOther l i
· rw [l2.getDualOther_of_hasDualInOther l hl1]
simp
exact HasDualInSelf.getFirst_append_inr_of_hasDualInOther l l2 h hl1
· rw [l2.getDualOther_of_not_hasDualInOther l hl1]
simp at h hl1
simp_all
rw [l2.getDual_of_hasDualInSelf h]
simp only [Option.map_some', Function.comp_apply]
· rw [(l ++ l2).getDual_of_not_hasDualInSelf h]
simp at h
rw [l2.getDual_of_not_hasDualInSelf h.1]
rw [l2.getDualOther_of_not_hasDualInOther l h.2]
rfl
def HasSingDualsInSelf : Prop :=
∀ i, (l.getDual i).bind l.getDual = some i
def HasSingDualsInOther : Prop :=
(∀ i, (l.getDualOther l2 i).bind (l2.getDualOther l) = some i)
∧ (∀ i, (l2.getDualOther l i).bind (l.getDualOther l2) = some i)
def HasNoDualsInSelf : Prop := l.getDual = fun _ => none
lemma hasSingDualsInSelf_append (h1 : l.HasNoDualsInSelf) (h2 : l2.HasNoDualsInSelf) :
(l ++ l2).HasSingDualsInSelf ↔ HasSingDualsInOther l l2 := by
apply Iff.intro
· intro h
simp [HasSingDualsInOther]
apply And.intro
· intro i
have h3 := h (appendEquiv (Sum.inl i))
simp at h3
rw [h1] at h3
simp at h3
by_cases hn : l.HasDualInOther l2 i
· rw [l.getDualOther_of_hasDualInOther l2 hn] at h3 ⊢
simp only [Option.map_some', Function.comp_apply, Option.some_bind, getDual_append_inr] at h3
rw [h2] at h3
simpa using h3
· rw [l.getDualOther_of_not_hasDualInOther l2 hn] at h3 ⊢
simp at h3
· intro i
have h3 := h (appendEquiv (Sum.inr i))
simp at h3
rw [h2] at h3
simp at h3
by_cases hn : l2.HasDualInOther l i
· rw [l2.getDualOther_of_hasDualInOther l hn] at h3 ⊢
simp only [Option.map_some', Function.comp_apply, Option.some_bind, getDual_append_inl] at h3
rw [h1] at h3
simpa using h3
· rw [l2.getDualOther_of_not_hasDualInOther l hn] at h3 ⊢
simp at h3
· intro h
intro i
obtain ⟨k, hk⟩ := appendEquiv.surjective i
sorry
end IndexList
end IndexNotation