refactor: Lint
This commit is contained in:
parent
a329661c24
commit
e5c85ac109
11 changed files with 179 additions and 182 deletions
|
@ -119,7 +119,7 @@ lemma insertIdx_eraseIdx_fin {I : Type} :
|
|||
exact insertIdx_eraseIdx_fin as ⟨n, Nat.lt_of_succ_lt_succ h⟩
|
||||
|
||||
lemma insertIdx_length_fst_append {I : Type} (φ : I) : (φs φs' : List I) →
|
||||
List.insertIdx φs.length φ (φs ++ φs') = (φs ++ φ :: φs')
|
||||
List.insertIdx φs.length φ (φs ++ φs') = (φs ++ φ :: φs')
|
||||
| [], φs' => by simp
|
||||
| φ' :: φs, φs' => by
|
||||
simp
|
||||
|
|
|
@ -92,14 +92,15 @@ lemma insertionSortMin_lt_mem_insertionSortDropMinPos_of_lt {α : Type} (r : α
|
|||
exact Fin.succAbove_ne (insertionSortMinPosFin r a l) i
|
||||
|
||||
lemma insertionSort_insertionSort {α : Type} (r : α → α → Prop) [DecidableRel r]
|
||||
[IsTotal α r] [IsTrans α r] (l1 : List α):
|
||||
[IsTotal α r] [IsTrans α r] (l1 : List α) :
|
||||
List.insertionSort r (List.insertionSort r l1) = List.insertionSort r l1 := by
|
||||
apply List.Sorted.insertionSort_eq
|
||||
exact List.sorted_insertionSort r l1
|
||||
|
||||
lemma orderedInsert_commute {α : Type} (r : α → α → Prop) [DecidableRel r]
|
||||
[IsTotal α r] [IsTrans α r] (a b : α) (hr : ¬ r a b) : (l : List α) →
|
||||
List.orderedInsert r a (List.orderedInsert r b l) = List.orderedInsert r b (List.orderedInsert r a l)
|
||||
List.orderedInsert r a (List.orderedInsert r b l) =
|
||||
List.orderedInsert r b (List.orderedInsert r a l)
|
||||
| [] => by
|
||||
have hrb : r b a := by
|
||||
have ht := IsTotal.total (r := r) a b
|
||||
|
@ -125,11 +126,11 @@ lemma orderedInsert_commute {α : Type} (r : α → α → Prop) [DecidableRel r
|
|||
exact orderedInsert_commute r a b hr l
|
||||
|
||||
lemma insertionSort_orderedInsert_append {α : Type} (r : α → α → Prop) [DecidableRel r]
|
||||
[IsTotal α r] [IsTrans α r] (a : α) : (l1 l2 : List α) →
|
||||
List.insertionSort r (List.orderedInsert r a l1 ++ l2) = List.insertionSort r (a :: l1 ++ l2)
|
||||
[IsTotal α r] [IsTrans α r] (a : α) : (l1 l2 : List α) →
|
||||
List.insertionSort r (List.orderedInsert r a l1 ++ l2) = List.insertionSort r (a :: l1 ++ l2)
|
||||
| [], l2 => by
|
||||
simp
|
||||
| b :: l1, l2 => by
|
||||
| b :: l1, l2 => by
|
||||
conv_lhs => simp
|
||||
by_cases h : r a b
|
||||
· simp [h]
|
||||
|
@ -138,25 +139,25 @@ lemma insertionSort_orderedInsert_append {α : Type} (r : α → α → Prop) [D
|
|||
simp
|
||||
rw [orderedInsert_commute r a b h]
|
||||
|
||||
|
||||
lemma insertionSort_insertionSort_append {α : Type} (r : α → α → Prop) [DecidableRel r]
|
||||
[IsTotal α r] [IsTrans α r] : (l1 l2 : List α) →
|
||||
[IsTotal α r] [IsTrans α r] : (l1 l2 : List α) →
|
||||
List.insertionSort r (List.insertionSort r l1 ++ l2) = List.insertionSort r (l1 ++ l2)
|
||||
| [], l2 => by
|
||||
simp
|
||||
| a :: l1, l2 => by
|
||||
| a :: l1, l2 => by
|
||||
conv_lhs => simp
|
||||
rw [insertionSort_orderedInsert_append]
|
||||
simp
|
||||
rw [insertionSort_insertionSort_append r l1 l2]
|
||||
|
||||
lemma insertionSort_append_insertionSort_append {α : Type} (r : α → α → Prop) [DecidableRel r]
|
||||
[IsTotal α r] [IsTrans α r] : (l1 l2 l3 : List α) →
|
||||
List.insertionSort r (l1 ++ List.insertionSort r l2 ++ l3) = List.insertionSort r (l1 ++ l2 ++ l3)
|
||||
[IsTotal α r] [IsTrans α r] : (l1 l2 l3 : List α) →
|
||||
List.insertionSort r (l1 ++ List.insertionSort r l2 ++ l3) =
|
||||
List.insertionSort r (l1 ++ l2 ++ l3)
|
||||
| [], l2, l3 => by
|
||||
simp
|
||||
exact insertionSort_insertionSort_append r l2 l3
|
||||
| a :: l1, l2, l3 => by
|
||||
| a :: l1, l2, l3 => by
|
||||
simp only [List.insertionSort, List.append_eq]
|
||||
rw [insertionSort_append_insertionSort_append r l1 l2 l3]
|
||||
|
||||
|
@ -168,7 +169,7 @@ lemma orderedInsert_length {α : Type} (r : α → α → Prop) [DecidableRel r]
|
|||
|
||||
lemma takeWhile_orderedInsert {α : Type} (r : α → α → Prop) [DecidableRel r]
|
||||
[IsTotal α r] [IsTrans α r]
|
||||
(a b : α) (hr : ¬ r a b) : (l : List α) →
|
||||
(a b : α) (hr : ¬ r a b) : (l : List α) →
|
||||
(List.takeWhile (fun c => !decide (r a c)) (List.orderedInsert r b l)).length =
|
||||
(List.takeWhile (fun c => !decide (r a c)) l).length + 1
|
||||
| [] => by
|
||||
|
@ -193,7 +194,7 @@ lemma takeWhile_orderedInsert {α : Type} (r : α → α → Prop) [DecidableRel
|
|||
|
||||
lemma takeWhile_orderedInsert' {α : Type} (r : α → α → Prop) [DecidableRel r]
|
||||
[IsTotal α r] [IsTrans α r]
|
||||
(a b : α) (hr : ¬ r a b) : (l : List α) →
|
||||
(a b : α) (hr : ¬ r a b) : (l : List α) →
|
||||
(List.takeWhile (fun c => !decide (r b c)) (List.orderedInsert r a l)).length =
|
||||
(List.takeWhile (fun c => !decide (r b c)) l).length
|
||||
| [] => by
|
||||
|
@ -219,11 +220,11 @@ lemma takeWhile_orderedInsert' {α : Type} (r : α → α → Prop) [DecidableRe
|
|||
· simp [hac, h]
|
||||
exact takeWhile_orderedInsert' r a b hr l
|
||||
|
||||
lemma insertionSortEquiv_commute {α : Type} (r : α → α → Prop) [DecidableRel r]
|
||||
[IsTotal α r] [IsTrans α r] (a b : α) (hr : ¬ r a b) (n : ℕ) : (l : List α) →
|
||||
lemma insertionSortEquiv_commute {α : Type} (r : α → α → Prop) [DecidableRel r]
|
||||
[IsTotal α r] [IsTrans α r] (a b : α) (hr : ¬ r a b) (n : ℕ) : (l : List α) →
|
||||
(hn : n + 2 < (a :: b :: l).length) →
|
||||
insertionSortEquiv r (a :: b :: l) ⟨n + 2, hn⟩ = (finCongr (by simp))
|
||||
(insertionSortEquiv r (b :: a :: l) ⟨n + 2, hn⟩):= by
|
||||
insertionSortEquiv r (a :: b :: l) ⟨n + 2, hn⟩ = (finCongr (by simp))
|
||||
(insertionSortEquiv r (b :: a :: l) ⟨n + 2, hn⟩) := by
|
||||
have hrba : r b a:= by
|
||||
have ht := IsTotal.total (r := r) a b
|
||||
simp_all
|
||||
|
@ -245,12 +246,21 @@ lemma insertionSortEquiv_commute {α : Type} (r : α → α → Prop) [Decidabl
|
|||
conv_rhs => erw [orderedInsertEquiv_fin_succ]
|
||||
ext
|
||||
simp
|
||||
let a1 : Fin ((List.orderedInsert r b (List.insertionSort r l)).length + 1) := ⟨↑(orderedInsertPos r (List.orderedInsert r b (List.insertionSort r l)) a), orderedInsertPos_lt_length r (List.orderedInsert r b (List.insertionSort r l)) a⟩
|
||||
let b1 : Fin ((List.insertionSort r l).length + 1) := ⟨↑(orderedInsertPos r (List.insertionSort r l) b), orderedInsertPos_lt_length r (List.insertionSort r l) b⟩
|
||||
let a2 : Fin ((List.insertionSort r l).length + 1) := ⟨↑(orderedInsertPos r (List.insertionSort r l) a), orderedInsertPos_lt_length r (List.insertionSort r l) a⟩
|
||||
let b2 : Fin ((List.orderedInsert r a (List.insertionSort r l)).length + 1) := ⟨↑(orderedInsertPos r (List.orderedInsert r a (List.insertionSort r l)) b), orderedInsertPos_lt_length r (List.orderedInsert r a (List.insertionSort r l)) b⟩
|
||||
let a1 : Fin ((List.orderedInsert r b (List.insertionSort r l)).length + 1) :=
|
||||
⟨↑(orderedInsertPos r (List.orderedInsert r b (List.insertionSort r l)) a),
|
||||
orderedInsertPos_lt_length r (List.orderedInsert r b (List.insertionSort r l)) a⟩
|
||||
let b1 : Fin ((List.insertionSort r l).length + 1) :=
|
||||
⟨↑(orderedInsertPos r (List.insertionSort r l) b),
|
||||
orderedInsertPos_lt_length r (List.insertionSort r l) b⟩
|
||||
let a2 : Fin ((List.insertionSort r l).length + 1) :=
|
||||
⟨↑(orderedInsertPos r (List.insertionSort r l) a),
|
||||
orderedInsertPos_lt_length r (List.insertionSort r l) a⟩
|
||||
let b2 : Fin ((List.orderedInsert r a (List.insertionSort r l)).length + 1) :=
|
||||
⟨↑(orderedInsertPos r (List.orderedInsert r a (List.insertionSort r l)) b),
|
||||
orderedInsertPos_lt_length r (List.orderedInsert r a (List.insertionSort r l)) b⟩
|
||||
have ht : (List.takeWhile (fun c => !decide (r b c)) (List.insertionSort r l))
|
||||
= (List.takeWhile (fun c => !decide (r b c)) ((List.takeWhile (fun c => !decide (r a c)) (List.insertionSort r l)))) := by
|
||||
= (List.takeWhile (fun c => !decide (r b c))
|
||||
((List.takeWhile (fun c => !decide (r a c)) (List.insertionSort r l)))) := by
|
||||
rw [List.takeWhile_takeWhile]
|
||||
simp
|
||||
congr
|
||||
|
@ -300,13 +310,14 @@ lemma insertionSortEquiv_commute {α : Type} (r : α → α → Prop) [Decidabl
|
|||
· simp [ha]
|
||||
· simp [ha]
|
||||
rw [hbs1, has2, hb, ha2]
|
||||
have hnat (a2 b2 n : ℕ) (h : b2 ≤ a2) : (if (if ↑n < ↑b2 then ↑n else ↑n + 1) < ↑a2 + 1 then if ↑n < ↑b2 then ↑n else ↑n + 1
|
||||
have hnat (a2 b2 n : ℕ) (h : b2 ≤ a2) : (if (if ↑n < ↑b2 then ↑n else ↑n + 1) < ↑a2 + 1 then
|
||||
if ↑n < ↑b2 then ↑n else ↑n + 1
|
||||
else (if ↑n < ↑b2 then ↑n else ↑n + 1) + 1) =
|
||||
if (if ↑n < ↑a2 then ↑n else ↑n + 1) < ↑b2 then if ↑n < ↑a2 then ↑n else ↑n + 1
|
||||
else (if ↑n < ↑a2 then ↑n else ↑n + 1) + 1 := by
|
||||
by_cases hnb2 : n < b2
|
||||
· simp [hnb2]
|
||||
have h1 : n < a2 + 1 := by omega
|
||||
have h1 : n < a2 + 1 := by omega
|
||||
have h2 : n < a2 := by omega
|
||||
simp [h1, h2, hnb2]
|
||||
· simp [hnb2]
|
||||
|
@ -319,23 +330,22 @@ lemma insertionSortEquiv_commute {α : Type} (r : α → α → Prop) [Decidabl
|
|||
rw [← hb]
|
||||
exact ha1
|
||||
|
||||
|
||||
|
||||
lemma insertionSortEquiv_orderedInsert_append {α : Type} (r : α → α → Prop) [DecidableRel r]
|
||||
[IsTotal α r] [IsTrans α r] (a a2 : α) : (l1 l2 : List α) →
|
||||
(insertionSortEquiv r (List.orderedInsert r a l1 ++ a2 :: l2) ⟨l1.length + 1, by
|
||||
simp⟩)
|
||||
= (finCongr (by simp; omega))
|
||||
((insertionSortEquiv r ( a :: l1 ++ a2 :: l2)) ⟨l1.length + 1, by simp⟩)
|
||||
((insertionSortEquiv r (a :: l1 ++ a2 :: l2)) ⟨l1.length + 1, by simp⟩)
|
||||
| [], l2 => by
|
||||
simp
|
||||
| b :: l1, l2 => by
|
||||
| b :: l1, l2 => by
|
||||
by_cases h : r a b
|
||||
· have h1 : (List.orderedInsert r a (b :: l1) ++ a2 :: l2) = (a :: b :: l1 ++ a2 :: l2) := by
|
||||
simp [h]
|
||||
rw [insertionSortEquiv_congr _ _ h1]
|
||||
simp
|
||||
· have h1 : (List.orderedInsert r a (b :: l1) ++ a2 :: l2) = (b :: List.orderedInsert r a (l1) ++ a2 :: l2) := by
|
||||
· have h1 : (List.orderedInsert r a (b :: l1) ++ a2 :: l2) =
|
||||
(b :: List.orderedInsert r a (l1) ++ a2 :: l2) := by
|
||||
simp [h]
|
||||
rw [insertionSortEquiv_congr _ _ h1]
|
||||
simp
|
||||
|
@ -346,36 +356,34 @@ lemma insertionSortEquiv_orderedInsert_append {α : Type} (r : α → α → Pro
|
|||
exact insertionSort_orderedInsert_append r a l1 (a2 :: l2)
|
||||
rw [orderedInsertEquiv_congr _ _ _ hl]
|
||||
simp
|
||||
change Fin.cast _ ((insertionSortEquiv r (b :: a :: (l1 ++ a2 :: l2))) ⟨l1.length + 2, by simp⟩) = _
|
||||
change Fin.cast _
|
||||
((insertionSortEquiv r (b :: a :: (l1 ++ a2 :: l2))) ⟨l1.length + 2, by simp⟩) = _
|
||||
have hl : l1.length + 1 +1 = l1.length + 2 := by omega
|
||||
simp [hl]
|
||||
conv_rhs =>
|
||||
erw [insertionSortEquiv_commute _ _ _ h _ _]
|
||||
simp
|
||||
|
||||
|
||||
|
||||
|
||||
lemma insertionSortEquiv_insertionSort_append {α : Type} (r : α → α → Prop) [DecidableRel r]
|
||||
[IsTotal α r] [IsTrans α r] (a : α) : (l1 l2 : List α) →
|
||||
(insertionSortEquiv r (List.insertionSort r l1 ++ a :: l2) ⟨l1.length, by simp⟩)
|
||||
= finCongr (by simp) (insertionSortEquiv r (l1 ++ a :: l2) ⟨l1.length, by simp⟩)
|
||||
| [], l2 => by
|
||||
simp
|
||||
| b :: l1, l2 => by
|
||||
| b :: l1, l2 => by
|
||||
simp
|
||||
have hl := insertionSortEquiv_orderedInsert_append r b a (List.insertionSort r l1) l2
|
||||
simp at hl
|
||||
rw [hl]
|
||||
have ih := insertionSortEquiv_insertionSort_append r a l1 l2
|
||||
have ih := insertionSortEquiv_insertionSort_append r a l1 l2
|
||||
simp [insertionSortEquiv]
|
||||
rw [ih]
|
||||
have hl : (List.insertionSort r (List.insertionSort r l1 ++ a :: l2)) = (List.insertionSort r (l1 ++ a :: l2)) := by
|
||||
have hl : (List.insertionSort r (List.insertionSort r l1 ++ a :: l2)) =
|
||||
(List.insertionSort r (l1 ++ a :: l2)) := by
|
||||
exact insertionSort_insertionSort_append r l1 (a :: l2)
|
||||
rw [orderedInsertEquiv_congr _ _ _ hl]
|
||||
simp
|
||||
|
||||
|
||||
/-!
|
||||
|
||||
## Insertion sort with equal fields
|
||||
|
@ -389,7 +397,7 @@ lemma orderedInsert_filter_of_pos {α : Type} (r : α → α → Prop) [Decidabl
|
|||
| [], hl => by
|
||||
simp
|
||||
exact h
|
||||
| b :: l, hl => by
|
||||
| b :: l, hl => by
|
||||
simp
|
||||
by_cases hpb : p b <;> by_cases hab : r a b
|
||||
· simp [hpb, hab]
|
||||
|
@ -405,7 +413,8 @@ lemma orderedInsert_filter_of_pos {α : Type} (r : α → α → Prop) [Decidabl
|
|||
rw [List.filter_cons_of_pos (by simp [h]),
|
||||
List.filter_cons_of_neg (by simp [hpb])]
|
||||
rw [List.orderedInsert_eq_take_drop]
|
||||
have hl : List.takeWhile (fun b => decide ¬r a b) (List.filter (fun b => decide (p b)) l) = [] := by
|
||||
have hl : List.takeWhile (fun b => decide ¬r a b)
|
||||
(List.filter (fun b => decide (p b)) l) = [] := by
|
||||
rw [List.takeWhile_eq_nil_iff]
|
||||
intro c hc
|
||||
simp at hc
|
||||
|
@ -413,13 +422,15 @@ lemma orderedInsert_filter_of_pos {α : Type} (r : α → α → Prop) [Decidabl
|
|||
apply IsTrans.trans a b _ hab
|
||||
simp at hl
|
||||
apply hl.1
|
||||
have hlf : (List.filter (fun b => decide (p b)) l)[0] ∈ (List.filter (fun b => decide (p b)) l) := by
|
||||
have hlf : (List.filter (fun b => decide (p b)) l)[0] ∈
|
||||
(List.filter (fun b => decide (p b)) l) := by
|
||||
exact List.getElem_mem c
|
||||
simp [- List.getElem_mem] at hlf
|
||||
simp [- List.getElem_mem] at hlf
|
||||
exact hlf.1
|
||||
rw [hl]
|
||||
simp
|
||||
conv_lhs => rw [← List.takeWhile_append_dropWhile (fun b => decide ¬r a b) (List.filter (fun b => decide (p b)) l )]
|
||||
conv_lhs => rw [← List.takeWhile_append_dropWhile (fun b => decide ¬r a b)
|
||||
(List.filter (fun b => decide (p b)) l)]
|
||||
rw [hl]
|
||||
simp
|
||||
· simp [hab]
|
||||
|
@ -439,10 +450,8 @@ lemma orderedInsert_filter_of_neg {α : Type} (r : α → α → Prop) [Decidabl
|
|||
exact List.takeWhile_append_dropWhile (fun b => !decide (r a b)) l
|
||||
simp [h]
|
||||
|
||||
|
||||
|
||||
lemma insertionSort_filter {α : Type} (r : α → α → Prop) [DecidableRel r] [IsTotal α r]
|
||||
[IsTrans α r] (p : α → Prop) [DecidablePred p] : (l : List α) →
|
||||
[IsTrans α r] (p : α → Prop) [DecidablePred p] : (l : List α) →
|
||||
List.insertionSort r (List.filter p l) =
|
||||
List.filter p (List.insertionSort r l)
|
||||
| [] => by simp
|
||||
|
@ -468,7 +477,7 @@ lemma takeWhile_sorted_eq_filter {α : Type} (r : α → α → Prop) [Decidable
|
|||
| [], _ => by simp
|
||||
| b :: l, hl => by
|
||||
simp at hl
|
||||
by_cases hb : ¬ r a b
|
||||
by_cases hb : ¬ r a b
|
||||
· simp [hb]
|
||||
simpa using takeWhile_sorted_eq_filter r a l hl.2
|
||||
· simp_all
|
||||
|
@ -477,12 +486,12 @@ lemma takeWhile_sorted_eq_filter {α : Type} (r : α → α → Prop) [Decidable
|
|||
exact hl.1 c hc
|
||||
|
||||
lemma dropWhile_sorted_eq_filter {α : Type} (r : α → α → Prop) [DecidableRel r]
|
||||
[IsTotal α r] [IsTrans α r] (a : α) : (l : List α) → (hl : l.Sorted r) →
|
||||
List.dropWhile (fun c => ¬ r a c) l = List.filter (fun c => r a c) l
|
||||
[IsTotal α r] [IsTrans α r] (a : α) : (l : List α) → (hl : l.Sorted r) →
|
||||
List.dropWhile (fun c => ¬ r a c) l = List.filter (fun c => r a c) l
|
||||
| [], _ => by simp
|
||||
| b :: l, hl => by
|
||||
simp at hl
|
||||
by_cases hb : ¬ r a b
|
||||
by_cases hb : ¬ r a b
|
||||
· simp [hb]
|
||||
simpa using dropWhile_sorted_eq_filter r a l hl.2
|
||||
· simp_all
|
||||
|
@ -494,14 +503,14 @@ lemma dropWhile_sorted_eq_filter {α : Type} (r : α → α → Prop) [Decidable
|
|||
exact hl.1 c hc
|
||||
|
||||
lemma dropWhile_sorted_eq_filter_filter {α : Type} (r : α → α → Prop) [DecidableRel r]
|
||||
[IsTotal α r] [IsTrans α r] (a : α) :(l : List α) → (hl : l.Sorted r) →
|
||||
List.filter (fun c => r a c) l =
|
||||
[IsTotal α r] [IsTrans α r] (a : α) :(l : List α) → (hl : l.Sorted r) →
|
||||
List.filter (fun c => r a c) l =
|
||||
List.filter (fun c => r a c ∧ r c a) l ++ List.filter (fun c => r a c ∧ ¬ r c a) l
|
||||
| [], _ => by
|
||||
simp
|
||||
| b :: l, hl => by
|
||||
simp at hl
|
||||
by_cases hb : ¬ r a b
|
||||
by_cases hb : ¬ r a b
|
||||
· simp [hb]
|
||||
simpa using dropWhile_sorted_eq_filter_filter r a l hl.2
|
||||
· simp_all
|
||||
|
@ -529,25 +538,26 @@ lemma dropWhile_sorted_eq_filter_filter {α : Type} (r : α → α → Prop) [De
|
|||
exact hl.2
|
||||
|
||||
lemma filter_rel_eq_insertionSort {α : Type} (r : α → α → Prop) [DecidableRel r]
|
||||
[IsTotal α r] [IsTrans α r] (a : α) :(l : List α) →
|
||||
[IsTotal α r] [IsTrans α r] (a : α) : (l : List α) →
|
||||
List.filter (fun c => r a c ∧ r c a) (l.insertionSort r) =
|
||||
List.filter (fun c => r a c ∧ r c a) l
|
||||
| [] => by simp
|
||||
| b :: l => by
|
||||
simp only [ List.insertionSort]
|
||||
simp only [List.insertionSort]
|
||||
by_cases h : r a b ∧ r b a
|
||||
· have hl := orderedInsert_filter_of_pos r b (fun c => r a c ∧ r c a) h (List.insertionSort r l)
|
||||
(by exact List.sorted_insertionSort r l)
|
||||
· have hl := orderedInsert_filter_of_pos r b (fun c => r a c ∧ r c a) h
|
||||
(List.insertionSort r l) (by exact List.sorted_insertionSort r l)
|
||||
simp at hl ⊢
|
||||
rw [hl]
|
||||
rw [List.orderedInsert_eq_take_drop]
|
||||
have ht : List.takeWhile (fun b_1 => decide ¬r b b_1)
|
||||
(List.filter (fun b => decide (r a b) && decide (r b a)) (List.insertionSort r l)) = [] := by
|
||||
(List.filter (fun b => decide (r a b) && decide (r b a))
|
||||
(List.insertionSort r l)) = [] := by
|
||||
rw [List.takeWhile_eq_nil_iff]
|
||||
intro hl
|
||||
simp
|
||||
have hx := List.getElem_mem hl
|
||||
simp [- List.getElem_mem] at hx
|
||||
simp [- List.getElem_mem] at hx
|
||||
apply IsTrans.trans b a _ h.2
|
||||
simp_all
|
||||
rw [ht]
|
||||
|
@ -557,13 +567,14 @@ lemma filter_rel_eq_insertionSort {α : Type} (r : α → α → Prop) [Decidabl
|
|||
have ih := filter_rel_eq_insertionSort r a l
|
||||
simp at ih
|
||||
rw [← ih]
|
||||
have htd := List.takeWhile_append_dropWhile (fun b_1 => decide ¬r b b_1) (List.filter (fun b => decide (r a b) && decide (r b a)) (List.insertionSort r l))
|
||||
have htd := List.takeWhile_append_dropWhile (fun b_1 => decide ¬r b b_1)
|
||||
(List.filter (fun b => decide (r a b) && decide (r b a)) (List.insertionSort r l))
|
||||
simp [decide_not, - List.takeWhile_append_dropWhile] at htd
|
||||
conv_rhs => rw [← htd]
|
||||
simp [- List.takeWhile_append_dropWhile]
|
||||
intro hl
|
||||
have hx := List.getElem_mem hl
|
||||
simp [- List.getElem_mem] at hx
|
||||
simp [- List.getElem_mem] at hx
|
||||
apply IsTrans.trans b a _ h.2
|
||||
simp_all
|
||||
simp_all
|
||||
|
@ -575,9 +586,8 @@ lemma filter_rel_eq_insertionSort {α : Type} (r : α → α → Prop) [Decidabl
|
|||
simp_all
|
||||
simpa using h
|
||||
|
||||
|
||||
lemma insertionSort_of_eq_list {α : Type} (r : α → α → Prop) [DecidableRel r]
|
||||
[IsTotal α r] [IsTrans α r] (a : α) (l1 l l2 : List α)
|
||||
[IsTotal α r] [IsTrans α r] (a : α) (l1 l l2 : List α)
|
||||
(h : ∀ b ∈ l, r a b ∧ r b a) :
|
||||
List.insertionSort r (l1 ++ l ++ l2) =
|
||||
(List.takeWhile (fun c => ¬ r a c) ((l1 ++ l2).insertionSort r))
|
||||
|
@ -586,14 +596,14 @@ lemma insertionSort_of_eq_list {α : Type} (r : α → α → Prop) [DecidableRe
|
|||
++ (List.filter (fun c => r a c ∧ r c a) l2)
|
||||
++ (List.filter (fun c => r a c ∧ ¬ r c a) ((l1 ++ l2).insertionSort r))
|
||||
:= by
|
||||
have hl : List.insertionSort r (l1 ++ l ++ l2) =
|
||||
have hl : List.insertionSort r (l1 ++ l ++ l2) =
|
||||
List.takeWhile (fun c => ¬ r a c) ((l1 ++ l ++ l2).insertionSort r) ++
|
||||
List.dropWhile (fun c => ¬ r a c) ((l1 ++ l ++ l2).insertionSort r) := by
|
||||
exact (List.takeWhile_append_dropWhile (fun c => decide ¬r a c)
|
||||
(List.insertionSort r (l1 ++ l ++ l2))).symm
|
||||
have hlt : List.takeWhile (fun c => ¬ r a c) ((l1 ++ l ++ l2).insertionSort r)
|
||||
= List.takeWhile (fun c => ¬ r a c) ((l1 ++ l2).insertionSort r) := by
|
||||
rw [takeWhile_sorted_eq_filter, takeWhile_sorted_eq_filter ]
|
||||
rw [takeWhile_sorted_eq_filter, takeWhile_sorted_eq_filter]
|
||||
rw [← insertionSort_filter, ← insertionSort_filter]
|
||||
congr 1
|
||||
simp
|
||||
|
@ -601,7 +611,7 @@ lemma insertionSort_of_eq_list {α : Type} (r : α → α → Prop) [DecidableRe
|
|||
exact List.sorted_insertionSort r (l1 ++ l2)
|
||||
exact List.sorted_insertionSort r (l1 ++ l ++ l2)
|
||||
conv_lhs => rw [hl, hlt]
|
||||
simp only [decide_not, Bool.decide_and]
|
||||
simp only [decide_not, Bool.decide_and]
|
||||
simp
|
||||
have h1 := dropWhile_sorted_eq_filter r a (List.insertionSort r (l1 ++ (l ++ l2)))
|
||||
simp at h1
|
||||
|
@ -615,13 +625,13 @@ lemma insertionSort_of_eq_list {α : Type} (r : α → α → Prop) [DecidableRe
|
|||
have h1 := insertionSort_filter r (fun c => decide (r a c) && !decide (r c a)) (l1 ++ (l ++ l2))
|
||||
simp at h1
|
||||
rw [← h1]
|
||||
have h2 := insertionSort_filter r (fun c => decide (r a c) && !decide (r c a)) (l1 ++ l2)
|
||||
have h2 := insertionSort_filter r (fun c => decide (r a c) && !decide (r c a)) (l1 ++ l2)
|
||||
simp at h2
|
||||
rw [← h2]
|
||||
congr
|
||||
have hl : List.filter (fun b => decide (r a b) && !decide (r b a)) l = [] := by
|
||||
rw [@List.filter_eq_nil_iff]
|
||||
intro c hc
|
||||
intro c hc
|
||||
simp_all
|
||||
rw [hl]
|
||||
simp
|
||||
|
@ -629,7 +639,7 @@ lemma insertionSort_of_eq_list {α : Type} (r : α → α → Prop) [DecidableRe
|
|||
exact List.sorted_insertionSort r (l1 ++ (l ++ l2))
|
||||
|
||||
lemma insertionSort_of_takeWhile_filter {α : Type} (r : α → α → Prop) [DecidableRel r]
|
||||
[IsTotal α r] [IsTrans α r] (a : α) (l1 l2 : List α) :
|
||||
[IsTotal α r] [IsTrans α r] (a : α) (l1 l2 : List α) :
|
||||
List.insertionSort r (l1 ++ l2) =
|
||||
(List.takeWhile (fun c => ¬ r a c) ((l1 ++ l2).insertionSort r))
|
||||
++ (List.filter (fun c => r a c ∧ r c a) l1)
|
||||
|
@ -642,5 +652,4 @@ lemma insertionSort_of_takeWhile_filter {α : Type} (r : α → α → Prop) [De
|
|||
simp
|
||||
simp
|
||||
|
||||
|
||||
end HepLean.List
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue