feat: Fix pauli matrices as tensors. Speedup

This commit is contained in:
jstoobysmith 2024-10-25 13:50:19 +00:00
parent c565e7ea1c
commit e6ef68d7e6
9 changed files with 692 additions and 322 deletions

View file

@ -29,28 +29,52 @@ open TensorTree
open OverColor.Discrete
noncomputable section
namespace Fermion
open complexLorentzTensor
namespace complexLorentzTensor
open Fermion
/-- The map to colors one gets when contracting the 4-vector indices pauli matrices. -/
def pauliMatrixContrPauliMatrixMap := ((Sum.elim
((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘
Fin.succAbove 0 ∘ Fin.succAbove 1) ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘
Fin.succAbove 1 ∘ Fin.succAbove 1) ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘
Fin.succAbove 0 ∘ Fin.succAbove 2)
lemma pauliMatrix_contr_lower_0_0_0 :
{(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0)) | μ α β ⊗
{(basisVector pauliCoMap (fun | 0 => 0 | 1 => 0 | 2 => 0)) | μ α β ⊗
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
conv =>
lhs
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; rhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
rw [basisVectorContrPauli, basisVectorContrPauli]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 1
funext k
@ -60,18 +84,42 @@ lemma pauliMatrix_contr_lower_0_0_0 :
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_0_1_1 :
{(basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1)) | μ α β ⊗
{(basisVector pauliCoMap (fun | 0 => 0 | 1 => 1 | 2 => 1)) | μ α β ⊗
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
conv =>
lhs
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; rhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
rw [basisVectorContrPauli, basisVectorContrPauli]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 1
funext k
@ -81,18 +129,42 @@ lemma pauliMatrix_contr_lower_0_1_1 :
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_1_0_1 :
{(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)) | μ α β ⊗
{(basisVector pauliCoMap (fun | 0 => 1 | 1 => 0 | 2 => 1)) | μ α β ⊗
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
conv =>
lhs
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; rhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
rw [basisVectorContrPauli, basisVectorContrPauli]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 1
funext k
@ -102,18 +174,42 @@ lemma pauliMatrix_contr_lower_1_0_1 :
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_1_1_0 :
{(basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)) | μ α β ⊗
{(basisVector pauliCoMap (fun | 0 => 1 | 1 => 1 | 2 => 0)) | μ α β ⊗
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
+ basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
conv =>
lhs
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; rhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
rw [basisVectorContrPauli, basisVectorContrPauli]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 1
funext k
@ -123,19 +219,43 @@ lemma pauliMatrix_contr_lower_1_1_0 :
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_2_0_1 :
{(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)) | μ α β ⊗
{(basisVector pauliCoMap (fun | 0 => 2 | 1 => 0 | 2 => 1)) | μ α β ⊗
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
(-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1)
+ (I) •
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
conv =>
lhs
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; lhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; rhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
rw [basisVectorContrPauli, basisVectorContrPauli]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
@ -145,19 +265,43 @@ lemma pauliMatrix_contr_lower_2_0_1 :
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_2_1_0 :
{(basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0)) | μ α β ⊗
{(basisVector pauliCoMap (fun | 0 => 2 | 1 => 1 | 2 => 0)) | μ α β ⊗
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
(-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)
+ (I) •
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos,
contrBasisVectorMul_neg, contrBasisVectorMul_neg]
conv =>
lhs
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; lhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; rhs; rhs; lhs;
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
rw [basisVectorContrPauli, basisVectorContrPauli]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
@ -167,19 +311,43 @@ lemma pauliMatrix_contr_lower_2_1_0 :
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_3_0_0 :
{(basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)) | μ α β ⊗
{(basisVector pauliCoMap (fun | 0 => 3 | 1 => 0 | 2 => 0)) | μ α β ⊗
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0)
+ (-1 : ) • basisVector pauliMatrixContrPauliMatrixMap
(fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos]
conv =>
lhs
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; rhs; lhs;
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; rhs; rhs; lhs;
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
rw [basisVectorContrPauli, basisVectorContrPauli]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
@ -189,19 +357,43 @@ lemma pauliMatrix_contr_lower_3_0_0 :
fin_cases k <;> rfl
lemma pauliMatrix_contr_lower_3_1_1 :
{(basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1)) | μ α β ⊗
{(basisVector pauliCoMap (fun | 0 => 3 | 1 => 1 | 2 => 1)) | μ α β ⊗
PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor =
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
+ (-1 : ) •
basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by
rw [basis_contr_pauliMatrix_basis_tree_expand]
rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_neg, contrBasisVectorMul_neg,
contrBasisVectorMul_pos, contrBasisVectorMul_pos]
conv =>
lhs
rw [basis_contr_pauliMatrix_basis_tree_expand_tensor]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; lhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; lhs; rhs; rhs; lhs
rw [contrBasisVectorMul_neg (by decide)]
conv =>
lhs; lhs; rhs; lhs;
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs; rhs; rhs; lhs;
rw [contrBasisVectorMul_pos (by decide)]
conv =>
lhs
simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add]
rw [basisVectorContrPauli, basisVectorContrPauli]
/- Simplifying. -/
simp only [smul_tensor, add_tensor, tensorNode_tensor]
simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add]
congr 1
· congr 2
funext k
@ -210,35 +402,34 @@ lemma pauliMatrix_contr_lower_3_1_1 :
funext k
fin_cases k <;> rfl
/-! TODO: Work out why `pauliMatrix_lower_basis_expand_prod'` is needed. -/
/-- This lemma is exactly the same as `pauliMatrix_lower_basis_expand_prod'`.
/-! TODO: Work out why `pauliCo_prod_basis_expand'` is needed. -/
/-- This lemma is exactly the same as `pauliCo_prod_basis_expand`.
It is needed here for `pauliMatrix_contract_pauliMatrix_aux`. It is unclear why
`pauliMatrix_lower_basis_expand_prod` does not work. -/
private lemma pauliMatrix_lower_basis_expand_prod' {n : } {c : Fin n → complexLorentzTensor.C}
private lemma pauliCo_prod_basis_expand' {n : } {c : Fin n → complexLorentzTensor.C}
(t : TensorTree complexLorentzTensor c) :
(prod {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ t).tensor =
(TensorTree.prod (tensorNode pauliCo) t).tensor =
((((tensorNode
(basisVector pauliMatrixLowerMap fun | 0 => 0 | 1 => 0 | 2 => 0)).prod t).add
(basisVector pauliCoMap fun | 0 => 0 | 1 => 0 | 2 => 0)).prod t).add
(((tensorNode
(basisVector pauliMatrixLowerMap fun | 0 => 0 | 1 => 1 | 2 => 1)).prod t).add
(basisVector pauliCoMap fun | 0 => 0 | 1 => 1 | 2 => 1)).prod t).add
((TensorTree.smul (-1) ((tensorNode
(basisVector pauliMatrixLowerMap fun | 0 => 1 | 1 => 0 | 2 => 1)).prod t)).add
(basisVector pauliCoMap fun | 0 => 1 | 1 => 0 | 2 => 1)).prod t)).add
((TensorTree.smul (-1) ((tensorNode
(basisVector pauliMatrixLowerMap fun | 0 => 1 | 1 => 1 | 2 => 0)).prod t)).add
(basisVector pauliCoMap fun | 0 => 1 | 1 => 1 | 2 => 0)).prod t)).add
((TensorTree.smul I ((tensorNode
(basisVector pauliMatrixLowerMap fun | 0 => 2 | 1 => 0 | 2 => 1)).prod t)).add
(basisVector pauliCoMap fun | 0 => 2 | 1 => 0 | 2 => 1)).prod t)).add
((TensorTree.smul (-I) ((tensorNode
(basisVector pauliMatrixLowerMap fun | 0 => 2 | 1 => 1 | 2 => 0)).prod t)).add
(basisVector pauliCoMap fun | 0 => 2 | 1 => 1 | 2 => 0)).prod t)).add
((TensorTree.smul (-1) ((tensorNode
(basisVector pauliMatrixLowerMap fun | 0 => 3 | 1 => 0 | 2 => 0)).prod t)).add
(basisVector pauliCoMap fun | 0 => 3 | 1 => 0 | 2 => 0)).prod t)).add
((tensorNode
(basisVector pauliMatrixLowerMap fun | 0 => 3 | 1 => 1 | 2 => 1)).prod
(basisVector pauliCoMap fun | 0 => 3 | 1 => 1 | 2 => 1)).prod
t))))))))).tensor := by
exact pauliMatrix_lower_basis_expand_prod _
exact pauliCo_prod_basis_expand _
lemma pauliMatrix_contract_pauliMatrix_aux :
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗
PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor
lemma pauliCo_contr_pauliContr_expand_aux :
{pauliCo | μ α β ⊗ PauliMatrix.asConsTensor | μ α' β'}ᵀ.tensor
= ((tensorNode
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) +
basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)).add
@ -266,7 +457,7 @@ lemma pauliMatrix_contract_pauliMatrix_aux :
((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) +
(-1 : ) • basisVector pauliMatrixContrPauliMatrixMap
fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1))))))))).tensor := by
rw [contr_tensor_eq <| pauliMatrix_lower_basis_expand_prod' _]
rw [contr_tensor_eq <| pauliCo_prod_basis_expand' _]
/- Moving contraction through addition. -/
rw [contr_add]
rw [add_tensor_eq_snd <| contr_add _ _]
@ -309,9 +500,8 @@ lemma pauliMatrix_contract_pauliMatrix_aux :
add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| eq_tensorNode_of_eq_tensor <|
pauliMatrix_contr_lower_3_1_1]
lemma pauliMatrix_contract_pauliMatrix_expand :
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗
PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor =
lemma pauliCo_contr_pauliContr_expand :
{pauliCo | ν α β ⊗ PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor =
2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)
+ 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0)
- 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)
@ -326,9 +516,8 @@ lemma pauliMatrix_contract_pauliMatrix_expand :
abel
/-- The statement that `η_{μν} σ^{μ α dot β} σ^{ν α' dot β'} = 2 ε^{αα'} ε^{dot β dot β'}`. -/
theorem pauliMatrix_contract_pauliMatrix :
{Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗
PauliMatrix.asConsTensor | ν α' β' =
theorem pauliCo_contr_pauliContr :
{pauliCo | ν α β ⊗ PauliMatrix.asConsTensor | ν α' β' =
2 •ₜ Fermion.leftMetric | α α' ⊗ Fermion.rightMetric | β β'}ᵀ := by
rw [pauliMatrix_contract_pauliMatrix_expand]
rw [perm_tensor_eq <| smul_tensor_eq <| leftMetric_mul_rightMetric_tree]
@ -370,4 +559,4 @@ theorem pauliMatrix_contract_pauliMatrix :
· funext i
fin_cases i <;> rfl
end Fermion
end complexLorentzTensor