feat: Add results about solution planes
This commit is contained in:
parent
137c73c9bb
commit
e710c9278e
5 changed files with 743 additions and 2 deletions
65
HepLean/AnomalyCancellation/SMNu/PlusU1/BoundPlaneDim.lean
Normal file
65
HepLean/AnomalyCancellation/SMNu/PlusU1/BoundPlaneDim.lean
Normal file
|
@ -0,0 +1,65 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.AnomalyCancellation.SMNu.PlusU1.Basic
|
||||
import HepLean.AnomalyCancellation.SMNu.PlusU1.FamilyMaps
|
||||
import HepLean.AnomalyCancellation.SMNu.PlusU1.PlaneNonSols
|
||||
|
||||
universe v u
|
||||
|
||||
namespace SMRHN
|
||||
namespace PlusU1
|
||||
|
||||
open SMνCharges
|
||||
open SMνACCs
|
||||
open BigOperators
|
||||
|
||||
def existsPlane (n : ℕ) : Prop := ∃ (B : Fin n → (PlusU1 3).charges),
|
||||
LinearIndependent ℚ B ∧ ∀ (f : Fin n → ℚ), (PlusU1 3).isSolution (∑ i, f i • B i)
|
||||
|
||||
lemma exists_plane_exists_basis {n : ℕ} (hE : existsPlane n) :
|
||||
∃ (B : Fin 11 ⊕ Fin n → (PlusU1 3).charges), LinearIndependent ℚ B := by
|
||||
obtain ⟨E, hE1, hE2⟩ := hE
|
||||
obtain ⟨B, hB1, hB2⟩ := eleven_dim_plane_of_no_sols_exists
|
||||
let Y := Sum.elim B E
|
||||
use Y
|
||||
apply Fintype.linearIndependent_iff.mpr
|
||||
intro g hg
|
||||
rw [@Fintype.sum_sum_type] at hg
|
||||
rw [@add_eq_zero_iff_eq_neg] at hg
|
||||
rw [← @Finset.sum_neg_distrib] at hg
|
||||
have h1 : ∑ x : Fin n, -(g (Sum.inr x) • Y (Sum.inr x)) =
|
||||
∑ x : Fin n, (-g (Sum.inr x)) • Y (Sum.inr x):= by
|
||||
apply Finset.sum_congr
|
||||
simp
|
||||
intro i _
|
||||
simp
|
||||
rw [h1] at hg
|
||||
have h2 : ∑ a₁ : Fin 11, g (Sum.inl a₁) • Y (Sum.inl a₁) = 0 := by
|
||||
apply hB2
|
||||
erw [hg]
|
||||
exact hE2 fun i => -g (Sum.inr i)
|
||||
rw [Fintype.linearIndependent_iff] at hB1 hE1
|
||||
have h3 : ∀ i, g (Sum.inl i) = 0 := hB1 (fun i => (g (Sum.inl i))) h2
|
||||
rw [h2] at hg
|
||||
have h4 : ∀ i, - g (Sum.inr i) = 0 := hE1 (fun i => (- g (Sum.inr i))) hg.symm
|
||||
simp at h4
|
||||
intro i
|
||||
match i with
|
||||
| Sum.inl i => exact h3 i
|
||||
| Sum.inr i => exact h4 i
|
||||
|
||||
|
||||
theorem plane_exists_dim_le_7 {n : ℕ} (hn : existsPlane n) : n ≤ 7 := by
|
||||
obtain ⟨B, hB⟩ := exists_plane_exists_basis hn
|
||||
have h1 := LinearIndependent.fintype_card_le_finrank hB
|
||||
simp at h1
|
||||
rw [show FiniteDimensional.finrank ℚ (PlusU1 3).charges = 18 from
|
||||
FiniteDimensional.finrank_fin_fun ℚ] at h1
|
||||
exact Nat.le_of_add_le_add_left h1
|
||||
|
||||
|
||||
end PlusU1
|
||||
end SMRHN
|
Loading…
Add table
Add a link
Reference in a new issue