feat: Add boundedness props
This commit is contained in:
parent
d727d2a293
commit
e8ce2119c0
2 changed files with 34 additions and 6 deletions
|
@ -23,8 +23,8 @@ open HiggsField
|
|||
noncomputable section
|
||||
|
||||
/-- The potential of the two Higgs doublet model. -/
|
||||
def potential (Φ1 Φ2 : HiggsField) (m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : ℝ)
|
||||
(m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : ℂ) (x : SpaceTime) : ℝ :=
|
||||
def potential (m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : ℝ)
|
||||
(m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : ℂ) (Φ1 Φ2 : HiggsField) (x : SpaceTime) : ℝ :=
|
||||
m₁₁2 * ‖Φ1‖_H ^ 2 x + m₂₂2 * ‖Φ2‖_H ^ 2 x - (m₁₂2 * ⟪Φ1, Φ2⟫_H x + conj m₁₂2 * ⟪Φ2, Φ1⟫_H x).re
|
||||
+ 1/2 * 𝓵₁ * ‖Φ1‖_H ^ 2 x * ‖Φ1‖_H ^ 2 x + 1/2 * 𝓵₂ * ‖Φ2‖_H ^ 2 x * ‖Φ2‖_H ^ 2 x
|
||||
+ 𝓵₃ * ‖Φ1‖_H ^ 2 x * ‖Φ2‖_H ^ 2 x
|
||||
|
@ -46,8 +46,8 @@ variable (m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : ℂ)
|
|||
/-- Swapping `Φ1` with `Φ2`, and a number of the parameters (with possible conjugation) leads
|
||||
to an identical potential. -/
|
||||
lemma swap_fields :
|
||||
potential Φ1 Φ2 m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇
|
||||
= potential Φ2 Φ1 m₂₂2 m₁₁2 𝓵₂ 𝓵₁ 𝓵₃ 𝓵₄ (conj m₁₂2) (conj 𝓵₅) (conj 𝓵₇) (conj 𝓵₆) := by
|
||||
potential m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ Φ1 Φ2
|
||||
= potential m₂₂2 m₁₁2 𝓵₂ 𝓵₁ 𝓵₃ 𝓵₄ (conj m₁₂2) (conj 𝓵₅) (conj 𝓵₇) (conj 𝓵₆) Φ2 Φ1 := by
|
||||
funext x
|
||||
simp only [potential, HiggsField.normSq, Complex.add_re, Complex.mul_re, Complex.conj_re,
|
||||
Complex.conj_im, neg_mul, sub_neg_eq_add, one_div, Complex.norm_eq_abs, Complex.inv_re,
|
||||
|
@ -60,7 +60,7 @@ lemma swap_fields :
|
|||
rw [HiggsField.innerProd, HiggsField.innerProd, ← InnerProductSpace.conj_symm, Complex.abs_conj]
|
||||
|
||||
/-- If `Φ₂` is zero the potential reduces to the Higgs potential on `Φ₁`. -/
|
||||
lemma right_zero : potential Φ1 0 m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ =
|
||||
lemma right_zero : potential m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ Φ1 0 =
|
||||
StandardModel.HiggsField.potential (- m₁₁2) (𝓵₁/2) Φ1 := by
|
||||
funext x
|
||||
simp only [potential, normSq, ContMDiffSection.coe_zero, Pi.zero_apply, norm_zero, ne_eq,
|
||||
|
@ -72,7 +72,7 @@ lemma right_zero : potential Φ1 0 m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃
|
|||
simp only [true_or]
|
||||
|
||||
/-- If `Φ₁` is zero the potential reduces to the Higgs potential on `Φ₂`. -/
|
||||
lemma left_zero : potential 0 Φ2 m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ =
|
||||
lemma left_zero : potential m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ 0 Φ2 =
|
||||
StandardModel.HiggsField.potential (- m₂₂2) (𝓵₂/2) Φ2 := by
|
||||
rw [swap_fields, right_zero]
|
||||
|
||||
|
@ -84,6 +84,10 @@ lemma left_zero : potential 0 Φ2 m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵
|
|||
|
||||
/-! TODO: Prove bounded properties of the 2HDM potential. -/
|
||||
|
||||
/-- The proposition on the coefficents for a potential to be bounded. -/
|
||||
def IsBounded (m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : ℝ) (m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : ℂ) : Prop :=
|
||||
∃ c, ∀ Φ1 Φ2 x, c ≤ potential m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ Φ1 Φ2 x
|
||||
|
||||
/-!
|
||||
|
||||
## Smoothness of the potential
|
||||
|
|
|
@ -50,6 +50,30 @@ lemma potential_smooth (μSq lambda : ℝ) (φ : HiggsField) :
|
|||
((smooth_const.smul φ.normSq_smooth).smul φ.normSq_smooth)
|
||||
|
||||
namespace potential
|
||||
/-!
|
||||
|
||||
## Basic properties
|
||||
|
||||
-/
|
||||
|
||||
lemma complete_square (μ2 𝓵 : ℝ) (h : 𝓵 ≠ 0) (φ : HiggsField) (x : SpaceTime) :
|
||||
potential μ2 𝓵 φ x = 𝓵 * (‖φ‖_H ^ 2 x - μ2 / (2 * 𝓵)) ^ 2 - μ2 ^ 2 / (4 * 𝓵) := by
|
||||
simp only [potential]
|
||||
field_simp
|
||||
ring
|
||||
|
||||
/-!
|
||||
|
||||
## Boundness of the potential
|
||||
|
||||
-/
|
||||
|
||||
/-- The proposition on the coefficents for a potential to be bounded. -/
|
||||
def IsBounded (μ2 𝓵 : ℝ) : Prop :=
|
||||
∃ c, ∀ Φ x, c ≤ potential μ2 𝓵 Φ x
|
||||
|
||||
/-! TODO: Show when 𝓵 < 0, the potential is not bounded. -/
|
||||
|
||||
section lowerBound
|
||||
/-!
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue