feat: Add boundedness props
This commit is contained in:
parent
d727d2a293
commit
e8ce2119c0
2 changed files with 34 additions and 6 deletions
|
@ -50,6 +50,30 @@ lemma potential_smooth (μSq lambda : ℝ) (φ : HiggsField) :
|
|||
((smooth_const.smul φ.normSq_smooth).smul φ.normSq_smooth)
|
||||
|
||||
namespace potential
|
||||
/-!
|
||||
|
||||
## Basic properties
|
||||
|
||||
-/
|
||||
|
||||
lemma complete_square (μ2 𝓵 : ℝ) (h : 𝓵 ≠ 0) (φ : HiggsField) (x : SpaceTime) :
|
||||
potential μ2 𝓵 φ x = 𝓵 * (‖φ‖_H ^ 2 x - μ2 / (2 * 𝓵)) ^ 2 - μ2 ^ 2 / (4 * 𝓵) := by
|
||||
simp only [potential]
|
||||
field_simp
|
||||
ring
|
||||
|
||||
/-!
|
||||
|
||||
## Boundness of the potential
|
||||
|
||||
-/
|
||||
|
||||
/-- The proposition on the coefficents for a potential to be bounded. -/
|
||||
def IsBounded (μ2 𝓵 : ℝ) : Prop :=
|
||||
∃ c, ∀ Φ x, c ≤ potential μ2 𝓵 Φ x
|
||||
|
||||
/-! TODO: Show when 𝓵 < 0, the potential is not bounded. -/
|
||||
|
||||
section lowerBound
|
||||
/-!
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue