refactor: Simps

This commit is contained in:
jstoobysmith 2024-11-09 18:06:48 +00:00
parent a7142ef99b
commit e963be5ef8
5 changed files with 20 additions and 18 deletions

View file

@ -112,9 +112,9 @@ lemma stdBasis_inl_apply_inr (i : Fin d) : (stdBasis (Sum.inl 0)).val (Sum.inr i
simp
lemma stdBasis_apply (μ ν : Fin 1 ⊕ Fin d) : (stdBasis μ).val ν = if μ = ν then 1 else 0 := by
simp [stdBasis, Pi.basisFun_apply, Pi.single_apply]
simp only [stdBasis, Basis.coe_ofEquivFun]
change Pi.single μ 1 ν = _
simp [Pi.single_apply]
simp only [Pi.single_apply]
refine ite_congr ?h₁ (congrFun rfl) (congrFun rfl)
exact Eq.propIntro (fun a => id (Eq.symm a)) fun a => id (Eq.symm a)
@ -346,9 +346,9 @@ lemma stdBasis_toFin1dEquiv_apply_ne {μ ν : Fin 1 ⊕ Fin d} (h : μ ≠ ν
exact Pi.single_eq_of_ne' h 1
lemma stdBasis_apply (μ ν : Fin 1 ⊕ Fin d) : (stdBasis μ).val ν = if μ = ν then 1 else 0 := by
simp [stdBasis, Pi.basisFun_apply, Pi.single_apply]
simp only [stdBasis, Basis.coe_ofEquivFun]
change Pi.single μ 1 ν = _
simp [Pi.single_apply]
simp only [Pi.single_apply]
refine ite_congr ?h₁ (congrFun rfl) (congrFun rfl)
exact Eq.propIntro (fun a => id (Eq.symm a)) fun a => id (Eq.symm a)