docs: CKM Relations
This commit is contained in:
parent
3e2a801c70
commit
e9ce319101
4 changed files with 25 additions and 3 deletions
|
@ -28,6 +28,7 @@ namespace Invariant
|
|||
def jarlskogℂCKM (V : CKMMatrix) : ℂ :=
|
||||
[V]us * [V]cb * conj [V]ub * conj [V]cs
|
||||
|
||||
/-- The complex jarlskog invariant is equal for equivalent CKM matrices. -/
|
||||
lemma jarlskogℂCKM_equiv (V U : CKMMatrix) (h : V ≈ U) :
|
||||
jarlskogℂCKM V = jarlskogℂCKM U := by
|
||||
obtain ⟨a, b, c, e, f, g, h⟩ := h
|
||||
|
@ -50,7 +51,7 @@ def jarlskogℂ : Quotient CKMMatrixSetoid → ℂ :=
|
|||
Quotient.lift jarlskogℂCKM jarlskogℂCKM_equiv
|
||||
|
||||
/-- An invariant for CKM mtrices corresponding to the square of the absolute values
|
||||
of the `us`, `ub` and `cb` elements multipled together divied by `(VudAbs V ^ 2 + VusAbs V ^2)` .
|
||||
of the `us`, `ub` and `cb` elements multipled together divided by `(VudAbs V ^ 2 + VusAbs V ^2)` .
|
||||
-/
|
||||
def VusVubVcdSq (V : Quotient CKMMatrixSetoid) : ℝ :=
|
||||
VusAbs V ^ 2 * VubAbs V ^ 2 * VcbAbs V ^2 / (VudAbs V ^ 2 + VusAbs V ^2)
|
||||
|
|
|
@ -23,6 +23,7 @@ open ComplexConjugate
|
|||
|
||||
section rows
|
||||
|
||||
/-- The absolute value squared of any rwo of a CKM matrix is `1`, in terms of `Vabs`. -/
|
||||
lemma VAbs_sum_sq_row_eq_one (V : Quotient CKMMatrixSetoid) (i : Fin 3) :
|
||||
(VAbs i 0 V) ^ 2 + (VAbs i 1 V) ^ 2 + (VAbs i 2 V) ^ 2 = 1 := by
|
||||
obtain ⟨V, hV⟩ := Quot.exists_rep V
|
||||
|
@ -37,25 +38,31 @@ lemma VAbs_sum_sq_row_eq_one (V : Quotient CKMMatrixSetoid) (i : Fin 3) :
|
|||
rw [← ofReal_inj]
|
||||
simpa using ht
|
||||
|
||||
/-- The absolute value squared of the first rwo of a CKM matrix is `1`, in terms of `abs`. -/
|
||||
lemma fst_row_normalized_abs (V : CKMMatrix) : abs [V]ud ^ 2 + abs [V]us ^ 2 + abs [V]ub ^ 2 = 1 :=
|
||||
VAbs_sum_sq_row_eq_one ⟦V⟧ 0
|
||||
|
||||
/-- The absolute value squared of the second rwo of a CKM matrix is `1`, in terms of `abs`. -/
|
||||
lemma snd_row_normalized_abs (V : CKMMatrix) : abs [V]cd ^ 2 + abs [V]cs ^ 2 + abs [V]cb ^ 2 = 1 :=
|
||||
VAbs_sum_sq_row_eq_one ⟦V⟧ 1
|
||||
|
||||
/-- The absolute value squared of the thid rwo of a CKM matrix is `1`, in terms of `abs`. -/
|
||||
lemma thd_row_normalized_abs (V : CKMMatrix) : abs [V]td ^ 2 + abs [V]ts ^ 2 + abs [V]tb ^ 2 = 1 :=
|
||||
VAbs_sum_sq_row_eq_one ⟦V⟧ 2
|
||||
|
||||
/-- The absolute value squared of the first rwo of a CKM matrix is `1`, in terms of `nomSq`. -/
|
||||
lemma fst_row_normalized_normSq (V : CKMMatrix) :
|
||||
normSq [V]ud + normSq [V]us + normSq [V]ub = 1 := by
|
||||
repeat rw [← Complex.sq_abs]
|
||||
exact V.fst_row_normalized_abs
|
||||
|
||||
/-- The absolute value squared of the second rwo of a CKM matrix is `1`, in terms of `nomSq`. -/
|
||||
lemma snd_row_normalized_normSq (V : CKMMatrix) :
|
||||
normSq [V]cd + normSq [V]cs + normSq [V]cb = 1 := by
|
||||
repeat rw [← Complex.sq_abs]
|
||||
exact V.snd_row_normalized_abs
|
||||
|
||||
/-- The absolute value squared of the third rwo of a CKM matrix is `1`, in terms of `nomSq`. -/
|
||||
lemma thd_row_normalized_normSq (V : CKMMatrix) :
|
||||
normSq [V]td + normSq [V]ts + normSq [V]tb = 1 := by
|
||||
repeat rw [← Complex.sq_abs]
|
||||
|
@ -63,10 +70,10 @@ lemma thd_row_normalized_normSq (V : CKMMatrix) :
|
|||
|
||||
lemma normSq_Vud_plus_normSq_Vus (V : CKMMatrix) :
|
||||
normSq [V]ud + normSq [V]us = 1 - normSq [V]ub := by
|
||||
linear_combination (fst_row_normalized_normSq V)
|
||||
linear_combination fst_row_normalized_normSq V
|
||||
|
||||
lemma VudAbs_sq_add_VusAbs_sq : VudAbs V ^ 2 + VusAbs V ^2 = 1 - VubAbs V ^2 := by
|
||||
linear_combination (VAbs_sum_sq_row_eq_one V 0)
|
||||
linear_combination VAbs_sum_sq_row_eq_one V 0
|
||||
|
||||
lemma ud_us_neq_zero_iff_ub_neq_one (V : CKMMatrix) :
|
||||
[V]ud ≠ 0 ∨ [V]us ≠ 0 ↔ abs [V]ub ≠ 1 := by
|
||||
|
|
|
@ -36,6 +36,7 @@ def standParamAsMatrix (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ℝ) : Matrix (Fin
|
|||
|
||||
open CKMMatrix
|
||||
|
||||
/-- The standard parameterization forms a unitary matrix. -/
|
||||
lemma standParamAsMatrix_unitary (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ℝ) :
|
||||
((standParamAsMatrix θ₁₂ θ₁₃ θ₂₃ δ₁₃)ᴴ * standParamAsMatrix θ₁₂ θ₁₃ θ₂₃ δ₁₃) = 1 := by
|
||||
funext j i
|
||||
|
@ -115,6 +116,9 @@ def standParam (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ℝ) : CKMMatrix :=
|
|||
exact standParamAsMatrix_unitary θ₁₂ θ₁₃ θ₂₃ δ₁₃⟩
|
||||
|
||||
namespace standParam
|
||||
|
||||
/-- The top-row of the standard parameterization is the cross product of the conjugate of the
|
||||
up and charm rows. -/
|
||||
lemma cross_product_t (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ℝ) :
|
||||
[standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃]t =
|
||||
(conj [standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃]u ×₃ conj [standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃]c) := by
|
||||
|
@ -149,12 +153,16 @@ lemma cross_product_t (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ℝ) :
|
|||
rw [sin_sq]
|
||||
ring
|
||||
|
||||
/-- A CKM matrix which has rows equal to that of a standard parameterisation is equal
|
||||
to that standard parameterisation. -/
|
||||
lemma eq_rows (U : CKMMatrix) {θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ℝ} (hu : [U]u = [standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃]u)
|
||||
(hc : [U]c = [standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃]c) (hU : [U]t = conj [U]u ×₃ conj [U]c) :
|
||||
U = standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃ := by
|
||||
apply ext_Rows hu hc
|
||||
rw [hU, cross_product_t, hu, hc]
|
||||
|
||||
/-- Two standard parameterisations of CKM matrices are the same matrix if they have
|
||||
the same angles and the exponential of their faces is equal. -/
|
||||
lemma eq_exp_of_phases (θ₁₂ θ₁₃ θ₂₃ δ₁₃ δ₁₃' : ℝ) (h : cexp (δ₁₃ * I) = cexp (δ₁₃' * I)) :
|
||||
standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃ = standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃' := by
|
||||
simp only [standParam, standParamAsMatrix, ofReal_cos, ofReal_sin, neg_mul]
|
||||
|
|
|
@ -63,6 +63,7 @@ lemma basis_eq_FD {n : ℕ} (c : Fin n → complexLorentzTensor.C)
|
|||
subst h'
|
||||
rfl
|
||||
|
||||
/-- The `perm` node acting on basis vectors corresponds to a basis vector. -/
|
||||
lemma perm_basisVector {n m : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||
{c1 : Fin m → complexLorentzTensor.C} (σ : OverColor.mk c ⟶ OverColor.mk c1)
|
||||
(b : Π j, Fin (complexLorentzTensor.repDim (c j))) :
|
||||
|
@ -79,6 +80,8 @@ lemma perm_basisVector {n m : ℕ} {c : Fin n → complexLorentzTensor.C}
|
|||
eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, LinearEquiv.ofLinear_apply]
|
||||
rw [basis_eq_FD]
|
||||
|
||||
/-- The `perm` node acting on basis vectors corresponds to a basis vector, as a tensor tree
|
||||
structue. -/
|
||||
lemma perm_basisVector_tree {n m : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||
{c1 : Fin m → complexLorentzTensor.C} (σ : OverColor.mk c ⟶ OverColor.mk c1)
|
||||
(b : Π j, Fin (complexLorentzTensor.repDim (c j))) :
|
||||
|
@ -168,6 +171,7 @@ def prodBasisVecEquiv {n m : ℕ} {c : Fin n → complexLorentzTensor.C}
|
|||
| Sum.inl _ => Equiv.refl _
|
||||
| Sum.inr _ => Equiv.refl _
|
||||
|
||||
/-- The `prod` node acting on basis vectors corresponds to a basis vector. -/
|
||||
lemma prod_basisVector {n m : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||
{c1 : Fin m → complexLorentzTensor.C}
|
||||
(b : Π k, Fin (complexLorentzTensor.repDim (c k)))
|
||||
|
@ -197,6 +201,7 @@ lemma prod_basisVector {n m : ℕ} {c : Fin n → complexLorentzTensor.C}
|
|||
| Sum.inl k => rfl
|
||||
| Sum.inr k => rfl
|
||||
|
||||
/-- The prod node acting on a basis vectors is a basis vector, as a tensor tree structure. -/
|
||||
lemma prod_basisVector_tree {n m : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||
{c1 : Fin m → complexLorentzTensor.C}
|
||||
(b : Π k, Fin (complexLorentzTensor.repDim (c k)))
|
||||
|
@ -207,6 +212,7 @@ lemma prod_basisVector_tree {n m : ℕ} {c : Fin n → complexLorentzTensor.C}
|
|||
((HepLean.PiTensorProduct.elimPureTensor b b1) (finSumFinEquiv.symm i))))).tensor := by
|
||||
exact prod_basisVector _ _
|
||||
|
||||
/-- The `eval` node acting on basis vectors corresponds to a basis vector. -/
|
||||
lemma eval_basisVector {n : ℕ} {c : Fin n.succ → complexLorentzTensor.C}
|
||||
{i : Fin n.succ} (j : Fin (complexLorentzTensor.repDim (c i)))
|
||||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue