refactor: Slight adjustments to doc-strings
This commit is contained in:
parent
3fc88eaca8
commit
ea29b15e4a
15 changed files with 64 additions and 30 deletions
|
@ -119,7 +119,7 @@ lemma crPart_mul_normalOrder (φ : 𝓕.FieldOp) (a : 𝓕.FieldOpAlgebra) :
|
|||
-/
|
||||
|
||||
/-- For a field specification `𝓕`, and `a` and `b` in `𝓕.FieldOpAlgebra` the normal ordering
|
||||
of the super commutator of `a` and `b` vanishes. I.e. `𝓝([a,b]ₛ) = 0`. -/
|
||||
of the super commutator of `a` and `b` vanishes, i.e. `𝓝([a,b]ₛ) = 0`. -/
|
||||
@[simp]
|
||||
lemma normalOrder_superCommute_eq_zero (a b : 𝓕.FieldOpAlgebra) :
|
||||
𝓝([a, b]ₛ) = 0 := by
|
||||
|
@ -346,15 +346,24 @@ noncomputable def contractStateAtIndex (φ : 𝓕.FieldOp) (φs : List 𝓕.Fiel
|
|||
|
||||
/--
|
||||
For a field specification `𝓕`, a `φ` in `𝓕.FieldOp` and a list `φs` of `𝓕.FieldOp`
|
||||
the following relation holds in the algebra `𝓕.FieldOpAlgebra`,
|
||||
`φ * 𝓝(φ₀φ₁…φₙ) = 𝓝(φφ₀φ₁…φₙ) + ∑ i, (𝓢(φ,φ₀φ₁…φᵢ₋₁) • [anPart φ, φᵢ]ₛ) * 𝓝(φ₀φ₁…φᵢ₋₁φᵢ₊₁…φₙ)`.
|
||||
then `φ * 𝓝(φ₀φ₁…φₙ)` is equal to
|
||||
|
||||
`𝓝(φφ₀φ₁…φₙ) + ∑ i, (𝓢(φ,φ₀φ₁…φᵢ₋₁) • [anPart φ, φᵢ]ₛ) * 𝓝(φ₀…φᵢ₋₁φᵢ₊₁…φₙ)`.
|
||||
|
||||
The proof of ultimately goes as follows:
|
||||
- `ofFieldOp_eq_crPart_add_anPart` is used to split `φ` into its creation and annihilation parts.
|
||||
- The fact that `crPart φ * 𝓝(φ₀φ₁…φₙ) = 𝓝(crPart φ * φ₀φ₁…φₙ)` is used.
|
||||
- The fact that `anPart φ * 𝓝(φ₀φ₁…φₙ)` is
|
||||
`𝓢(φ, φ₀φ₁…φₙ) 𝓝(φ₀φ₁…φₙ) * anPart φ + [anPart φ, 𝓝(φ₀φ₁…φₙ)]` is used
|
||||
- The fact that `𝓢(φ, φ₀φ₁…φₙ) 𝓝(φ₀φ₁…φₙ) * anPart φ = 𝓝(anPart φ * φ₀φ₁…φₙ)`
|
||||
- The following relation is then used
|
||||
|
||||
`crPart φ * 𝓝(φ₀φ₁…φₙ) = 𝓝(crPart φ * φ₀φ₁…φₙ)`.
|
||||
|
||||
- It used that `anPart φ * 𝓝(φ₀φ₁…φₙ)` is equal to
|
||||
|
||||
`𝓢(φ, φ₀φ₁…φₙ) 𝓝(φ₀φ₁…φₙ) * anPart φ + [anPart φ, 𝓝(φ₀φ₁…φₙ)]`
|
||||
|
||||
- Then it is used that
|
||||
|
||||
`𝓢(φ, φ₀φ₁…φₙ) 𝓝(φ₀φ₁…φₙ) * anPart φ = 𝓝(anPart φ * φ₀φ₁…φₙ)`
|
||||
|
||||
- The result `ofCrAnOp_superCommute_normalOrder_ofCrAnList_sum` is used
|
||||
to expand `[anPart φ, 𝓝(φ₀φ₁…φₙ)]` as a sum.
|
||||
-/
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue