Update TargetSpace.lean
This commit is contained in:
parent
7427ce4207
commit
ea6c61eb29
1 changed files with 58 additions and 104 deletions
|
@ -46,10 +46,8 @@ section higgsVec
|
|||
casting vectors. -/
|
||||
def higgsVecToFin2ℂ : higgsVec →L[ℝ] (Fin 2 → ℂ) where
|
||||
toFun x := x
|
||||
map_add' x y := by
|
||||
simp
|
||||
map_smul' a x := by
|
||||
simp
|
||||
map_add' x y := by simp
|
||||
map_smul' a x := by simp
|
||||
|
||||
lemma smooth_higgsVecToFin2ℂ : Smooth 𝓘(ℝ, higgsVec) 𝓘(ℝ, Fin 2 → ℂ) higgsVecToFin2ℂ :=
|
||||
ContinuousLinearMap.smooth higgsVecToFin2ℂ
|
||||
|
@ -63,11 +61,10 @@ noncomputable def higgsRepUnitary : gaugeGroup →* unitaryGroup (Fin 2) ℂ whe
|
|||
map_mul' := by
|
||||
intro ⟨_, a2, a3⟩ ⟨_, b2, b3⟩
|
||||
change repU1 (a3 * b3) * fundamentalSU2 (a2 * b2) = _
|
||||
rw [repU1.map_mul, fundamentalSU2.map_mul]
|
||||
rw [mul_assoc, mul_assoc, ← mul_assoc (repU1 b3) _ _, repU1_fundamentalSU2_commute]
|
||||
rw [repU1.map_mul, fundamentalSU2.map_mul, mul_assoc, mul_assoc,
|
||||
← mul_assoc (repU1 b3) _ _, repU1_fundamentalSU2_commute]
|
||||
repeat rw [mul_assoc]
|
||||
map_one' := by
|
||||
simp only [Prod.snd_one, _root_.map_one, Prod.fst_one, mul_one]
|
||||
map_one' := by simp
|
||||
|
||||
/-- An orthonormal basis of higgsVec. -/
|
||||
noncomputable def orthonormBasis : OrthonormalBasis (Fin 2) ℂ higgsVec :=
|
||||
|
@ -87,20 +84,16 @@ lemma matrixToLin_star (g : Matrix (Fin 2) (Fin 2) ℂ) :
|
|||
|
||||
lemma matrixToLin_unitary (g : unitaryGroup (Fin 2) ℂ) :
|
||||
matrixToLin g ∈ unitary (higgsVec →L[ℂ] higgsVec) := by
|
||||
rw [@unitary.mem_iff, ← matrixToLin_star, ← matrixToLin.map_mul, ← matrixToLin.map_mul]
|
||||
rw [mem_unitaryGroup_iff.mp g.prop, mem_unitaryGroup_iff'.mp g.prop, matrixToLin.map_one]
|
||||
rw [@unitary.mem_iff, ← matrixToLin_star, ← matrixToLin.map_mul, ← matrixToLin.map_mul,
|
||||
mem_unitaryGroup_iff.mp g.prop, mem_unitaryGroup_iff'.mp g.prop, matrixToLin.map_one]
|
||||
simp
|
||||
|
||||
/-- The natural homomorphism from unitary `2×2` complex matrices to unitary transformations
|
||||
of `higgsVec`. -/
|
||||
noncomputable def unitaryToLin : unitaryGroup (Fin 2) ℂ →* unitary (higgsVec →L[ℂ] higgsVec) where
|
||||
toFun g := ⟨matrixToLin g, matrixToLin_unitary g⟩
|
||||
map_mul' g h := by
|
||||
ext
|
||||
simp
|
||||
map_one' := by
|
||||
ext
|
||||
simp
|
||||
map_mul' g h := by simp
|
||||
map_one' := by simp
|
||||
|
||||
/-- The inclusion of unitary transformations on `higgsVec` into all linear transformations. -/
|
||||
@[simps!]
|
||||
|
@ -114,8 +107,7 @@ def rep : Representation ℂ gaugeGroup higgsVec :=
|
|||
|
||||
lemma higgsRepUnitary_mul (g : gaugeGroup) (φ : higgsVec) :
|
||||
(higgsRepUnitary g).1 *ᵥ φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) := by
|
||||
simp only [higgsRepUnitary_apply_coe]
|
||||
exact smul_mulVec_assoc (g.2.2 ^ 3) (g.2.1.1) φ
|
||||
simp [higgsRepUnitary_apply_coe, smul_mulVec_assoc]
|
||||
|
||||
lemma rep_apply (g : gaugeGroup) (φ : higgsVec) : rep g φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) :=
|
||||
higgsRepUnitary_mul g φ
|
||||
|
@ -133,13 +125,11 @@ def potential (φ : higgsVec) : ℝ := - μSq * ‖φ‖ ^ 2 + λ * ‖φ‖ ^
|
|||
|
||||
lemma potential_invariant (φ : higgsVec) (g : gaugeGroup) :
|
||||
potential μSq (λ) (rep g φ) = potential μSq (λ) φ := by
|
||||
simp only [potential, neg_mul]
|
||||
rw [norm_invariant]
|
||||
simp only [potential, neg_mul, norm_invariant]
|
||||
|
||||
lemma potential_as_quad (φ : higgsVec) :
|
||||
λ * ‖φ‖ ^ 2 * ‖φ‖ ^ 2 + (- μSq ) * ‖φ‖ ^ 2 + (- potential μSq (λ) φ) = 0 := by
|
||||
simp [potential]
|
||||
ring
|
||||
simp [potential]; ring
|
||||
|
||||
end potentialDefn
|
||||
section potentialProp
|
||||
|
@ -161,11 +151,9 @@ lemma zero_le_potential_discrim (φ : higgsVec) :
|
|||
0 ≤ discrim (λ) (- μSq ) (- potential μSq (λ) φ) := by
|
||||
have h1 := potential_as_quad μSq (λ) φ
|
||||
rw [quadratic_eq_zero_iff_discrim_eq_sq] at h1
|
||||
rw [h1]
|
||||
exact sq_nonneg (2 * (lambda ) * ‖φ‖ ^ 2 + -μSq)
|
||||
simp only [ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false]
|
||||
exact ne_of_gt hLam
|
||||
|
||||
· simp only [h1, ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false]
|
||||
exact sq_nonneg (2 * lambda * ‖φ‖ ^ 2 + -μSq)
|
||||
· exact ne_of_gt hLam
|
||||
|
||||
lemma potential_eq_zero_sol (φ : higgsVec)
|
||||
(hV : potential μSq (λ) φ = 0) : φ = 0 ∨ ‖φ‖ ^ 2 = μSq / λ := by
|
||||
|
@ -209,19 +197,14 @@ lemma potential_bounded_below (φ : higgsVec) :
|
|||
|
||||
lemma potential_bounded_below_of_μSq_nonpos {μSq : ℝ}
|
||||
(hμSq : μSq ≤ 0) (φ : higgsVec) : 0 ≤ potential μSq (λ) φ := by
|
||||
simp only [potential, neg_mul, add_zero]
|
||||
refine add_nonneg ?_ (potential_snd_term_nonneg hLam φ)
|
||||
field_simp
|
||||
rw [@mul_nonpos_iff]
|
||||
simp_all only [ge_iff_le, norm_nonneg, pow_nonneg, and_self, or_true]
|
||||
|
||||
field_simp [mul_nonpos_iff]
|
||||
simp_all [ge_iff_le, norm_nonneg, pow_nonneg, and_self, or_true]
|
||||
|
||||
lemma potential_eq_bound_discrim_zero (φ : higgsVec)
|
||||
(hV : potential μSq (λ) φ = - μSq ^ 2 / (4 * λ)) :
|
||||
discrim (λ) (- μSq) (- potential μSq (λ) φ) = 0 := by
|
||||
simp [discrim, hV]
|
||||
field_simp
|
||||
ring
|
||||
field_simp [discrim, hV]
|
||||
|
||||
lemma potential_eq_bound_higgsVec_sq (φ : higgsVec)
|
||||
(hV : potential μSq (λ) φ = - μSq ^ 2 / (4 * (λ))) :
|
||||
|
@ -229,81 +212,59 @@ lemma potential_eq_bound_higgsVec_sq (φ : higgsVec)
|
|||
have h1 := potential_as_quad μSq (λ) φ
|
||||
rw [quadratic_eq_zero_iff_of_discrim_eq_zero _
|
||||
(potential_eq_bound_discrim_zero μSq hLam φ hV)] at h1
|
||||
rw [h1]
|
||||
field_simp
|
||||
ring_nf
|
||||
simp only [ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false]
|
||||
simp_rw [h1, neg_neg]
|
||||
exact ne_of_gt hLam
|
||||
|
||||
lemma potential_eq_bound_iff (φ : higgsVec) :
|
||||
potential μSq (λ) φ = - μSq ^ 2 / (4 * (λ)) ↔ ‖φ‖ ^ 2 = μSq / (2 * (λ)) := by
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
exact potential_eq_bound_higgsVec_sq μSq hLam φ h
|
||||
· intro h
|
||||
have hv : ‖φ‖ ^ 4 = ‖φ‖ ^ 2 * ‖φ‖ ^ 2 := by
|
||||
ring_nf
|
||||
field_simp [potential, hv, h]
|
||||
ring
|
||||
potential μSq (λ) φ = - μSq ^ 2 / (4 * (λ)) ↔ ‖φ‖ ^ 2 = μSq / (2 * (λ)) :=
|
||||
Iff.intro (potential_eq_bound_higgsVec_sq μSq hLam φ)
|
||||
(fun h ↦ by
|
||||
have hv : ‖φ‖ ^ 4 = ‖φ‖ ^ 2 * ‖φ‖ ^ 2 := by ring_nf
|
||||
field_simp [potential, hv, h]
|
||||
ring_nf)
|
||||
|
||||
lemma potential_eq_bound_iff_of_μSq_nonpos {μSq : ℝ}
|
||||
(hμSq : μSq ≤ 0) (φ : higgsVec) : potential μSq (λ) φ = 0 ↔ φ = 0 := by
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
exact potential_eq_zero_sol_of_μSq_nonpos μSq hLam hμSq φ h
|
||||
· intro h
|
||||
simp [potential, h]
|
||||
(hμSq : μSq ≤ 0) (φ : higgsVec) : potential μSq (λ) φ = 0 ↔ φ = 0 :=
|
||||
Iff.intro (fun h ↦ potential_eq_zero_sol_of_μSq_nonpos μSq hLam hμSq φ h) (fun h ↦ by simp [potential, h])
|
||||
|
||||
lemma potential_eq_bound_IsMinOn (φ : higgsVec)
|
||||
lemma potential_eq_bound_IsMinOn (φ : higgsVec)
|
||||
(hv : potential μSq lambda φ = - μSq ^ 2 / (4 * lambda)) :
|
||||
IsMinOn (potential μSq lambda) Set.univ φ := by
|
||||
rw [isMinOn_univ_iff]
|
||||
intro x
|
||||
rw [hv]
|
||||
exact potential_bounded_below μSq hLam x
|
||||
rw [isMinOn_univ_iff, hv]
|
||||
exact fun x ↦ potential_bounded_below μSq hLam x
|
||||
|
||||
lemma potential_eq_bound_IsMinOn_of_μSq_nonpos {μSq : ℝ}
|
||||
(hμSq : μSq ≤ 0) (φ : higgsVec) (hv : potential μSq lambda φ = 0) :
|
||||
IsMinOn (potential μSq lambda) Set.univ φ := by
|
||||
rw [isMinOn_univ_iff]
|
||||
intro x
|
||||
rw [hv]
|
||||
exact potential_bounded_below_of_μSq_nonpos hLam hμSq x
|
||||
rw [isMinOn_univ_iff, hv]
|
||||
exact fun x ↦ potential_bounded_below_of_μSq_nonpos hLam hμSq x
|
||||
|
||||
lemma potential_bound_reached_of_μSq_nonneg {μSq : ℝ} (hμSq : 0 ≤ μSq) :
|
||||
∃ (φ : higgsVec), potential μSq lambda φ = - μSq ^ 2 / (4 * lambda) := by
|
||||
use ![√(μSq/(2 * lambda)), 0]
|
||||
refine (potential_eq_bound_iff μSq hLam _).mpr ?_
|
||||
simp [@PiLp.norm_sq_eq_of_L2, Fin.sum_univ_two]
|
||||
simp [PiLp.norm_sq_eq_of_L2]
|
||||
field_simp [mul_pow]
|
||||
|
||||
lemma IsMinOn_potential_iff_of_μSq_nonneg {μSq : ℝ} (hμSq : 0 ≤ μSq) :
|
||||
IsMinOn (potential μSq lambda) Set.univ φ ↔ ‖φ‖ ^ 2 = μSq /(2 * lambda) := by
|
||||
apply Iff.intro
|
||||
apply Iff.intro <;> rw [← potential_eq_bound_iff μSq hLam φ]
|
||||
· intro h
|
||||
obtain ⟨φm, hφ⟩ := potential_bound_reached_of_μSq_nonneg hLam hμSq
|
||||
have hm := isMinOn_univ_iff.mp h φm
|
||||
rw [hφ] at hm
|
||||
have h1 := potential_bounded_below μSq hLam φ
|
||||
rw [← potential_eq_bound_iff μSq hLam φ]
|
||||
exact (Real.partialOrder.le_antisymm _ _ h1 hm).symm
|
||||
· intro h
|
||||
rw [← potential_eq_bound_iff μSq hLam φ] at h
|
||||
exact potential_eq_bound_IsMinOn μSq hLam φ h
|
||||
|
||||
exact (Real.partialOrder.le_antisymm _ _ (potential_bounded_below μSq hLam φ) hm).symm
|
||||
· exact potential_eq_bound_IsMinOn μSq hLam φ
|
||||
|
||||
lemma IsMinOn_potential_iff_of_μSq_nonpos {μSq : ℝ} (hμSq : μSq ≤ 0) :
|
||||
IsMinOn (potential μSq lambda) Set.univ φ ↔ φ = 0 := by
|
||||
apply Iff.intro
|
||||
apply Iff.intro <;> rw [← potential_eq_bound_iff_of_μSq_nonpos hLam hμSq φ]
|
||||
· intro h
|
||||
have h0 := isMinOn_univ_iff.mp h 0
|
||||
rw [(potential_eq_bound_iff_of_μSq_nonpos hLam hμSq 0).mpr (by rfl)] at h0
|
||||
have h1 := potential_bounded_below_of_μSq_nonpos hLam hμSq φ
|
||||
rw [← (potential_eq_bound_iff_of_μSq_nonpos hLam hμSq φ)]
|
||||
rw [(potential_eq_bound_iff_of_μSq_nonpos hLam hμSq 0).mpr (by rfl)] at h0
|
||||
exact (Real.partialOrder.le_antisymm _ _ h1 h0).symm
|
||||
· intro h
|
||||
rw [← potential_eq_bound_iff_of_μSq_nonpos hLam hμSq φ] at h
|
||||
exact potential_eq_bound_IsMinOn_of_μSq_nonpos hLam hμSq φ h
|
||||
· exact potential_eq_bound_IsMinOn_of_μSq_nonpos hLam hμSq φ
|
||||
|
||||
end potentialProp
|
||||
/-- Given a Higgs vector, a rotation matrix which puts the first component of the
|
||||
|
@ -314,40 +275,30 @@ def rotateMatrix (φ : higgsVec) : Matrix (Fin 2) (Fin 2) ℂ :=
|
|||
lemma rotateMatrix_star (φ : higgsVec) :
|
||||
star φ.rotateMatrix =
|
||||
![![conj (φ 1) /‖φ‖ , φ 0 /‖φ‖], ![- conj (φ 0) / ‖φ‖ , φ 1 / ‖φ‖] ] := by
|
||||
simp [star]
|
||||
rw [rotateMatrix, conjTranspose]
|
||||
simp_rw [star, rotateMatrix, conjTranspose]
|
||||
ext i j
|
||||
fin_cases i <;> fin_cases j <;> simp [conj_ofReal]
|
||||
|
||||
|
||||
lemma rotateMatrix_det {φ : higgsVec} (hφ : φ ≠ 0) : (rotateMatrix φ).det = 1 := by
|
||||
simp [rotateMatrix, det_fin_two]
|
||||
have h1 : (‖φ‖ : ℂ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
|
||||
field_simp
|
||||
field_simp [rotateMatrix, det_fin_two]
|
||||
rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||||
simp only [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||||
simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm, add_comm]
|
||||
rfl
|
||||
|
||||
lemma rotateMatrix_unitary {φ : higgsVec} (hφ : φ ≠ 0) :
|
||||
(rotateMatrix φ) ∈ unitaryGroup (Fin 2) ℂ := by
|
||||
rw [mem_unitaryGroup_iff', rotateMatrix_star, rotateMatrix]
|
||||
erw [mul_fin_two, one_fin_two]
|
||||
have : (‖φ‖ : ℂ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
|
||||
congr
|
||||
field_simp
|
||||
ext i j
|
||||
fin_cases i <;> fin_cases j <;> field_simp
|
||||
· rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||||
simp only [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||||
fin_cases i <;> fin_cases j <;> field_simp <;> rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||||
· simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm, add_comm]
|
||||
rfl
|
||||
· ring_nf
|
||||
· ring_nf
|
||||
· rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||||
simp only [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||||
· simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
|
||||
rfl
|
||||
|
||||
lemma rotateMatrix_specialUnitary {φ : higgsVec} (hφ : φ ≠ 0) :
|
||||
(rotateMatrix φ) ∈ specialUnitaryGroup (Fin 2) ℂ :=
|
||||
|
@ -361,19 +312,22 @@ def rotateGuageGroup {φ : higgsVec} (hφ : φ ≠ 0) : gaugeGroup :=
|
|||
lemma rotateGuageGroup_apply {φ : higgsVec} (hφ : φ ≠ 0) :
|
||||
rep (rotateGuageGroup hφ) φ = ![0, ofReal ‖φ‖] := by
|
||||
rw [rep_apply]
|
||||
simp [rotateGuageGroup, rotateMatrix]
|
||||
simp only [rotateGuageGroup, rotateMatrix, one_pow, one_smul,
|
||||
Nat.succ_eq_add_one, Nat.reduceAdd, ofReal_eq_coe]
|
||||
ext i
|
||||
fin_cases i
|
||||
simp [mulVec, vecHead, vecTail]
|
||||
ring_nf
|
||||
simp only [Fin.mk_one, Fin.isValue, cons_val_one, head_cons]
|
||||
simp [mulVec, vecHead, vecTail]
|
||||
have : (‖φ‖ : ℂ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
|
||||
field_simp
|
||||
rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||||
simp only [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||||
· simp only [mulVec, Fin.zero_eta, Fin.isValue, cons_val', empty_val', cons_val_fin_one,
|
||||
cons_val_zero, cons_dotProduct, vecHead, vecTail, Nat.succ_eq_add_one, Nat.reduceAdd,
|
||||
Function.comp_apply, Fin.succ_zero_eq_one, dotProduct_empty, add_zero]
|
||||
ring_nf
|
||||
· simp only [Fin.mk_one, Fin.isValue, cons_val_one, head_cons, mulVec, Fin.isValue,
|
||||
cons_val', empty_val', cons_val_fin_one, vecHead, cons_dotProduct, vecTail, Nat.succ_eq_add_one,
|
||||
Nat.reduceAdd, Function.comp_apply, Fin.succ_zero_eq_one, dotProduct_empty, add_zero]
|
||||
have : (‖φ‖ : ℂ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
|
||||
field_simp
|
||||
rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||||
simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
|
||||
rfl
|
||||
|
||||
theorem rotate_fst_zero_snd_real (φ : higgsVec) :
|
||||
∃ (g : gaugeGroup), rep g φ = ![0, ofReal ‖φ‖] := by
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue