refactor: move algebra files

This commit is contained in:
jstoobysmith 2025-02-03 12:12:36 +00:00
parent 8abed940c2
commit ea6e128293
21 changed files with 37 additions and 37 deletions

View file

@ -1,226 +0,0 @@
/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.FieldSpecification.CrAnFieldOp
import HepLean.PerturbationTheory.FieldSpecification.CrAnSection
/-!
# Creation and annihlation free-algebra
This module defines the creation and annihilation algebra for a field structure.
The creation and annihilation algebra extends from the state algebra by adding information about
whether a state is a creation or annihilation operator.
The algebra is spanned by lists of creation/annihilation states.
The main structures defined in this module are:
* `FieldOpFreeAlgebra` - The creation and annihilation algebra
* `ofCrAnOpF` - Maps a creation/annihilation state to the algebra
* `ofCrAnListF` - Maps a list of creation/annihilation states to the algebra
* `ofFieldOpF` - Maps a state to a sum of creation and annihilation operators
* `crPartF` - The creation part of a state in the algebra
* `anPartF` - The annihilation part of a state in the algebra
* `superCommuteF` - The super commutator on the algebra
The key lemmas show how these operators interact, particularly focusing on the
super commutation relations between creation and annihilation operators.
-/
namespace FieldSpecification
variable {𝓕 : FieldSpecification}
/-- The creation and annihlation free-algebra.
The free algebra generated by `CrAnFieldOp`,
that is a position based states or assymptotic states with a specification of
whether the state is a creation or annihlation state.
As a module `FieldOpFreeAlgebra` is spanned by lists of `CrAnFieldOp`. -/
abbrev FieldOpFreeAlgebra (𝓕 : FieldSpecification) : Type := FreeAlgebra 𝓕.CrAnFieldOp
namespace FieldOpFreeAlgebra
/-- Maps a creation and annihlation state to the creation and annihlation free-algebra. -/
def ofCrAnOpF (φ : 𝓕.CrAnFieldOp) : FieldOpFreeAlgebra 𝓕 :=
FreeAlgebra.ι φ
/-- Maps a list creation and annihlation state to the creation and annihlation free-algebra
by taking their product. -/
def ofCrAnListF (φs : List 𝓕.CrAnFieldOp) : FieldOpFreeAlgebra 𝓕 := (List.map ofCrAnOpF φs).prod
@[simp]
lemma ofCrAnListF_nil : ofCrAnListF ([] : List 𝓕.CrAnFieldOp) = 1 := rfl
lemma ofCrAnListF_cons (φ : 𝓕.CrAnFieldOp) (φs : List 𝓕.CrAnFieldOp) :
ofCrAnListF (φ :: φs) = ofCrAnOpF φ * ofCrAnListF φs := rfl
lemma ofCrAnListF_append (φs φs' : List 𝓕.CrAnFieldOp) :
ofCrAnListF (φs ++ φs') = ofCrAnListF φs * ofCrAnListF φs' := by
simp [ofCrAnListF, List.map_append]
lemma ofCrAnListF_singleton (φ : 𝓕.CrAnFieldOp) :
ofCrAnListF [φ] = ofCrAnOpF φ := by simp [ofCrAnListF]
/-- Maps a state to the sum of creation and annihilation operators in
creation and annihilation free-algebra. -/
def ofFieldOpF (φ : 𝓕.FieldOp) : FieldOpFreeAlgebra 𝓕 :=
∑ (i : 𝓕.fieldOpToCrAnType φ), ofCrAnOpF ⟨φ, i⟩
/-- Maps a list of states to the creation and annihilation free-algebra by taking
the product of their sums of creation and annihlation operators.
Roughly `[φ1, φ2]` gets sent to `(φ1ᶜ+ φ1ᵃ) * (φ2ᶜ+ φ2ᵃ)` etc. -/
def ofFieldOpListF (φs : List 𝓕.FieldOp) : FieldOpFreeAlgebra 𝓕 := (List.map ofFieldOpF φs).prod
/-- Coercion from `List 𝓕.FieldOp` to `FieldOpFreeAlgebra 𝓕` through `ofFieldOpListF`. -/
instance : Coe (List 𝓕.FieldOp) (FieldOpFreeAlgebra 𝓕) := ⟨ofFieldOpListF⟩
@[simp]
lemma ofFieldOpListF_nil : ofFieldOpListF ([] : List 𝓕.FieldOp) = 1 := rfl
lemma ofFieldOpListF_cons (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
ofFieldOpListF (φ :: φs) = ofFieldOpF φ * ofFieldOpListF φs := rfl
lemma ofFieldOpListF_singleton (φ : 𝓕.FieldOp) :
ofFieldOpListF [φ] = ofFieldOpF φ := by simp [ofFieldOpListF]
lemma ofFieldOpListF_append (φs φs' : List 𝓕.FieldOp) :
ofFieldOpListF (φs ++ φs') = ofFieldOpListF φs * ofFieldOpListF φs' := by
dsimp only [ofFieldOpListF]
rw [List.map_append, List.prod_append]
lemma ofFieldOpListF_sum (φs : List 𝓕.FieldOp) :
ofFieldOpListF φs = ∑ (s : CrAnSection φs), ofCrAnListF s.1 := by
induction φs with
| nil => simp
| cons φ φs ih =>
rw [CrAnSection.sum_cons]
dsimp only [CrAnSection.cons, ofCrAnListF_cons]
conv_rhs =>
enter [2, x]
rw [← Finset.mul_sum]
rw [← Finset.sum_mul, ofFieldOpListF_cons, ← ih]
rfl
/-!
## Creation and annihilation parts of a state
-/
/-- The algebra map taking an element of the free-state algbra to
the part of it in the creation and annihlation free algebra
spanned by creation operators. -/
def crPartF : 𝓕.FieldOp → 𝓕.FieldOpFreeAlgebra := fun φ =>
match φ with
| FieldOp.inAsymp φ => ofCrAnOpF ⟨FieldOp.inAsymp φ, ()⟩
| FieldOp.position φ => ofCrAnOpF ⟨FieldOp.position φ, CreateAnnihilate.create⟩
| FieldOp.outAsymp _ => 0
@[simp]
lemma crPartF_negAsymp (φ : 𝓕.IncomingAsymptotic) :
crPartF (FieldOp.inAsymp φ) = ofCrAnOpF ⟨FieldOp.inAsymp φ, ()⟩ := by
simp [crPartF]
@[simp]
lemma crPartF_position (φ : 𝓕.PositionFieldOp) :
crPartF (FieldOp.position φ) =
ofCrAnOpF ⟨FieldOp.position φ, CreateAnnihilate.create⟩ := by
simp [crPartF]
@[simp]
lemma crPartF_posAsymp (φ : 𝓕.OutgoingAsymptotic) :
crPartF (FieldOp.outAsymp φ) = 0 := by
simp [crPartF]
/-- The algebra map taking an element of the free-state algbra to
the part of it in the creation and annihilation free algebra
spanned by annihilation operators. -/
def anPartF : 𝓕.FieldOp → 𝓕.FieldOpFreeAlgebra := fun φ =>
match φ with
| FieldOp.inAsymp _ => 0
| FieldOp.position φ => ofCrAnOpF ⟨FieldOp.position φ, CreateAnnihilate.annihilate⟩
| FieldOp.outAsymp φ => ofCrAnOpF ⟨FieldOp.outAsymp φ, ()⟩
@[simp]
lemma anPartF_negAsymp (φ : 𝓕.IncomingAsymptotic) :
anPartF (FieldOp.inAsymp φ) = 0 := by
simp [anPartF]
@[simp]
lemma anPartF_position (φ : 𝓕.PositionFieldOp) :
anPartF (FieldOp.position φ) =
ofCrAnOpF ⟨FieldOp.position φ, CreateAnnihilate.annihilate⟩ := by
simp [anPartF]
@[simp]
lemma anPartF_posAsymp (φ : 𝓕.OutgoingAsymptotic) :
anPartF (FieldOp.outAsymp φ) = ofCrAnOpF ⟨FieldOp.outAsymp φ, ()⟩ := by
simp [anPartF]
lemma ofFieldOpF_eq_crPartF_add_anPartF (φ : 𝓕.FieldOp) :
ofFieldOpF φ = crPartF φ + anPartF φ := by
rw [ofFieldOpF]
cases φ with
| inAsymp φ => simp [fieldOpToCrAnType]
| position φ => simp [fieldOpToCrAnType, CreateAnnihilate.sum_eq]
| outAsymp φ => simp [fieldOpToCrAnType]
/-!
## The basis of the creation and annihlation free-algebra.
-/
/-- The basis of the free creation and annihilation algebra formed by lists of CrAnFieldOp. -/
noncomputable def ofCrAnListFBasis : Basis (List 𝓕.CrAnFieldOp) (FieldOpFreeAlgebra 𝓕) where
repr := FreeAlgebra.equivMonoidAlgebraFreeMonoid.toLinearEquiv
@[simp]
lemma ofListBasis_eq_ofList (φs : List 𝓕.CrAnFieldOp) :
ofCrAnListFBasis φs = ofCrAnListF φs := by
simp only [ofCrAnListFBasis, FreeAlgebra.equivMonoidAlgebraFreeMonoid, MonoidAlgebra.of_apply,
Basis.coe_ofRepr, AlgEquiv.toLinearEquiv_symm, AlgEquiv.toLinearEquiv_apply,
AlgEquiv.ofAlgHom_symm_apply, ofCrAnListF]
erw [MonoidAlgebra.lift_apply]
simp only [zero_smul, Finsupp.sum_single_index, one_smul]
rw [@FreeMonoid.lift_apply]
match φs with
| [] => rfl
| φ :: φs => erw [List.map_cons]
/-!
## Some useful multi-linear maps.
-/
/-- The bi-linear map associated with multiplication in `FieldOpFreeAlgebra`. -/
noncomputable def mulLinearMap : FieldOpFreeAlgebra 𝓕 →ₗ[] FieldOpFreeAlgebra 𝓕 →ₗ[]
FieldOpFreeAlgebra 𝓕 where
toFun a := {
toFun := fun b => a * b,
map_add' := fun c d => by simp [mul_add]
map_smul' := by simp}
map_add' := fun a b => by
ext c
simp [add_mul]
map_smul' := by
intros
ext c
simp [smul_mul']
lemma mulLinearMap_apply (a b : FieldOpFreeAlgebra 𝓕) :
mulLinearMap a b = a * b := rfl
/-- The linear map associated with scalar-multiplication in `FieldOpFreeAlgebra`. -/
noncomputable def smulLinearMap (c : ) : FieldOpFreeAlgebra 𝓕 →ₗ[] FieldOpFreeAlgebra 𝓕 where
toFun a := c • a
map_add' := by simp
map_smul' m x := by simp [smul_smul, RingHom.id_apply, NonUnitalNormedCommRing.mul_comm]
end FieldOpFreeAlgebra
end FieldSpecification