feat: Informal results related to Feynman diagrams

This commit is contained in:
jstoobysmith 2024-12-03 13:30:27 +00:00
parent 9546e1fdc5
commit ead93e7e8e

View file

@ -14,8 +14,9 @@ This file currently contains a lighter implmentation of Feynman digrams than can
The implmentation here is done in conjunction with Wicks species etc.
This file is currently a stub.
-/
/-! TODO Remove this namespace-/
namespace LightFeynman
informal_definition FeynmanDiagram where
math :≈ "
@ -31,3 +32,33 @@ informal_definition FeynmanDiagram where
- For each vertex `ver : 𝓥` there exists an isomorphism between the object (roughly)
`(𝓘Fields v).2` and the pullback of `v` along `ver`."
deps :≈ [``Wick.Species]
informal_definition _root_.Wick.Contract.toFeynmanDiagram where
math :≈ "The Feynman diagram constructed from a complete Wick contraction."
deps :≈ [``TwoComplexScalar.WickContract, ``FeynmanDiagram]
informal_lemma _root_.Wick.Contract.toFeynmanDiagram_surj where
math :≈ "The map from Wick contractions to Feynman diagrams is surjective."
physics :≈ "Every Feynman digram corresponds to some Wick contraction."
deps :≈ [``TwoComplexScalar.WickContract, ``FeynmanDiagram]
informal_definition FeynmanDiagram.toSimpleGraph where
math :≈ "The simple graph underlying a Feynman diagram."
deps :≈ [``FeynmanDiagram]
informal_definition FeynmanDiagram.IsConnected where
math :≈ "A Feynman diagram is connected if its underlying simple graph is connected."
deps :≈ [``FeynmanDiagram]
informal_definition _root_.Wick.Contract.toFeynmanDiagram_isConnected_iff where
math :≈ "The Feynman diagram corresponding to a Wick contraction is connected
if and only if the Wick contraction is connected."
deps :≈ [``TwoComplexScalar.WickContract.IsConnected, ``FeynmanDiagram.IsConnected]
/-! TODO: Define an equivalence relation on Wick contracts related to the their underlying tensors
been equal after permutation. Show that two Wick contractions are equal under this
equivalence relation if and only if they have the same Feynman diagram. First step
is to turn these statements into appropriate informal lemmas and definitions. -/
end LightFeynman