feat: Informal results related to Feynman diagrams
This commit is contained in:
parent
9546e1fdc5
commit
ead93e7e8e
1 changed files with 32 additions and 1 deletions
|
@ -14,8 +14,9 @@ This file currently contains a lighter implmentation of Feynman digrams than can
|
|||
|
||||
The implmentation here is done in conjunction with Wicks species etc.
|
||||
|
||||
This file is currently a stub.
|
||||
-/
|
||||
/-! TODO Remove this namespace-/
|
||||
namespace LightFeynman
|
||||
|
||||
informal_definition FeynmanDiagram where
|
||||
math :≈ "
|
||||
|
@ -31,3 +32,33 @@ informal_definition FeynmanDiagram where
|
|||
- For each vertex `ver : 𝓥` there exists an isomorphism between the object (roughly)
|
||||
`(𝓘Fields v).2` and the pullback of `v` along `ver`."
|
||||
deps :≈ [``Wick.Species]
|
||||
|
||||
informal_definition _root_.Wick.Contract.toFeynmanDiagram where
|
||||
math :≈ "The Feynman diagram constructed from a complete Wick contraction."
|
||||
deps :≈ [``TwoComplexScalar.WickContract, ``FeynmanDiagram]
|
||||
|
||||
informal_lemma _root_.Wick.Contract.toFeynmanDiagram_surj where
|
||||
math :≈ "The map from Wick contractions to Feynman diagrams is surjective."
|
||||
physics :≈ "Every Feynman digram corresponds to some Wick contraction."
|
||||
deps :≈ [``TwoComplexScalar.WickContract, ``FeynmanDiagram]
|
||||
|
||||
informal_definition FeynmanDiagram.toSimpleGraph where
|
||||
math :≈ "The simple graph underlying a Feynman diagram."
|
||||
deps :≈ [``FeynmanDiagram]
|
||||
|
||||
informal_definition FeynmanDiagram.IsConnected where
|
||||
math :≈ "A Feynman diagram is connected if its underlying simple graph is connected."
|
||||
deps :≈ [``FeynmanDiagram]
|
||||
|
||||
informal_definition _root_.Wick.Contract.toFeynmanDiagram_isConnected_iff where
|
||||
math :≈ "The Feynman diagram corresponding to a Wick contraction is connected
|
||||
if and only if the Wick contraction is connected."
|
||||
deps :≈ [``TwoComplexScalar.WickContract.IsConnected, ``FeynmanDiagram.IsConnected]
|
||||
|
||||
|
||||
/-! TODO: Define an equivalence relation on Wick contracts related to the their underlying tensors
|
||||
been equal after permutation. Show that two Wick contractions are equal under this
|
||||
equivalence relation if and only if they have the same Feynman diagram. First step
|
||||
is to turn these statements into appropriate informal lemmas and definitions. -/
|
||||
|
||||
end LightFeynman
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue