feat: Add theorems related to Sols
This commit is contained in:
parent
7f447c6df8
commit
ec47df1493
5 changed files with 560 additions and 0 deletions
117
HepLean/AnomalyCancellation/SMNu/PlusU1/BMinusL.lean
Normal file
117
HepLean/AnomalyCancellation/SMNu/PlusU1/BMinusL.lean
Normal file
|
@ -0,0 +1,117 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.AnomalyCancellation.SMNu.PlusU1.Basic
|
||||
import HepLean.AnomalyCancellation.SMNu.PlusU1.FamilyMaps
|
||||
/-!
|
||||
# B Minus L in SM with RHN.
|
||||
|
||||
Relavent definitions for the SM `B-L`.
|
||||
|
||||
-/
|
||||
universe v u
|
||||
|
||||
namespace SMRHN
|
||||
namespace PlusU1
|
||||
|
||||
open SMνCharges
|
||||
open SMνACCs
|
||||
open BigOperators
|
||||
|
||||
variable {n : ℕ}
|
||||
|
||||
/-- $B - L$ in the 1-family case. -/
|
||||
@[simps!]
|
||||
def BL₁ : (PlusU1 1).Sols where
|
||||
val := fun i =>
|
||||
match i with
|
||||
| (0 : Fin 6) => 1
|
||||
| (1 : Fin 6) => -1
|
||||
| (2 : Fin 6) => -1
|
||||
| (3 : Fin 6) => -3
|
||||
| (4 : Fin 6) => 3
|
||||
| (5 : Fin 6) => 3
|
||||
linearSol := by
|
||||
intro i
|
||||
simp at i
|
||||
match i with
|
||||
| 0 => rfl
|
||||
| 1 => rfl
|
||||
| 2 => rfl
|
||||
| 3 => rfl
|
||||
quadSol := by
|
||||
intro i
|
||||
simp at i
|
||||
match i with
|
||||
| 0 => rfl
|
||||
cubicSol := by rfl
|
||||
|
||||
/-- $B - L$ in the $n$-family case. -/
|
||||
@[simps!]
|
||||
def BL (n : ℕ) : (PlusU1 n).Sols :=
|
||||
familyUniversalAF n BL₁
|
||||
|
||||
namespace BL
|
||||
|
||||
variable {n : ℕ}
|
||||
|
||||
lemma on_quadBiLin (S : (PlusU1 n).charges) :
|
||||
quadBiLin ((BL n).val, S) = 1/2 * accYY S + 3/2 * accSU2 S - 2 * accSU3 S := by
|
||||
erw [familyUniversal_quadBiLin]
|
||||
rw [accYY_decomp, accSU2_decomp, accSU3_decomp]
|
||||
simp
|
||||
ring
|
||||
|
||||
lemma on_quadBiLin_AFL (S : (PlusU1 n).LinSols) : quadBiLin ((BL n).val, S.val) = 0 := by
|
||||
rw [on_quadBiLin]
|
||||
rw [YYsol S, SU2Sol S, SU3Sol S]
|
||||
simp
|
||||
|
||||
lemma add_AFL_quad (S : (PlusU1 n).LinSols) (a b : ℚ) :
|
||||
accQuad (a • S.val + b • (BL n).val) = a ^ 2 * accQuad S.val := by
|
||||
erw [BiLinearSymm.toHomogeneousQuad_add, quadSol (b • (BL n)).1]
|
||||
rw [quadBiLin.map_smul₁, quadBiLin.map_smul₂, quadBiLin.swap, on_quadBiLin_AFL]
|
||||
erw [accQuad.map_smul]
|
||||
simp
|
||||
|
||||
lemma add_quad (S : (PlusU1 n).QuadSols) (a b : ℚ) :
|
||||
accQuad (a • S.val + b • (BL n).val) = 0 := by
|
||||
rw [add_AFL_quad, quadSol S]
|
||||
simp
|
||||
|
||||
/-- The `QuadSol` obtained by adding $B-L$ to a `QuadSol`. -/
|
||||
def addQuad (S : (PlusU1 n).QuadSols) (a b : ℚ) : (PlusU1 n).QuadSols :=
|
||||
linearToQuad (a • S.1 + b • (BL n).1.1) (add_quad S a b)
|
||||
|
||||
lemma addQuad_zero (S : (PlusU1 n).QuadSols) (a : ℚ): addQuad S a 0 = a • S := by
|
||||
simp [addQuad, linearToQuad]
|
||||
rfl
|
||||
|
||||
lemma on_cubeTriLin (S : (PlusU1 n).charges) :
|
||||
cubeTriLin ((BL n).val, (BL n).val, S) = 9 * accGrav S - 24 * accSU3 S := by
|
||||
erw [familyUniversal_cubeTriLin']
|
||||
rw [accGrav_decomp, accSU3_decomp]
|
||||
simp
|
||||
ring
|
||||
|
||||
lemma on_cubeTriLin_AFL (S : (PlusU1 n).LinSols) :
|
||||
cubeTriLin ((BL n).val, (BL n).val, S.val) = 0 := by
|
||||
rw [on_cubeTriLin]
|
||||
rw [gravSol S, SU3Sol S]
|
||||
simp
|
||||
|
||||
lemma add_AFL_cube (S : (PlusU1 n).LinSols) (a b : ℚ) :
|
||||
accCube (a • S.val + b • (BL n).val) =
|
||||
a ^ 2 * (a * accCube S.val + 3 * b * cubeTriLin (S.val, S.val, (BL n).val)) := by
|
||||
erw [TriLinearSymm.toCubic_add, cubeSol (b • (BL n)), accCube.map_smul]
|
||||
repeat rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂, cubeTriLin.map_smul₃]
|
||||
rw [on_cubeTriLin_AFL]
|
||||
simp
|
||||
ring
|
||||
|
||||
|
||||
end BL
|
||||
end PlusU1
|
||||
end SMRHN
|
146
HepLean/AnomalyCancellation/SMNu/PlusU1/HyperCharge.lean
Normal file
146
HepLean/AnomalyCancellation/SMNu/PlusU1/HyperCharge.lean
Normal file
|
@ -0,0 +1,146 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.AnomalyCancellation.SMNu.PlusU1.Basic
|
||||
import HepLean.AnomalyCancellation.SMNu.PlusU1.FamilyMaps
|
||||
/-!
|
||||
# Hypercharge in SM with RHN.
|
||||
|
||||
Relavent definitions for the SM hypercharge.
|
||||
|
||||
-/
|
||||
universe v u
|
||||
|
||||
namespace SMRHN
|
||||
namespace PlusU1
|
||||
|
||||
open SMνCharges
|
||||
open SMνACCs
|
||||
open BigOperators
|
||||
|
||||
/-- The hypercharge for 1 family. -/
|
||||
@[simps!]
|
||||
def Y₁ : (PlusU1 1).Sols where
|
||||
val := fun i =>
|
||||
match i with
|
||||
| (0 : Fin 6) => 1
|
||||
| (1 : Fin 6) => -4
|
||||
| (2 : Fin 6) => 2
|
||||
| (3 : Fin 6) => -3
|
||||
| (4 : Fin 6) => 6
|
||||
| (5 : Fin 6) => 0
|
||||
linearSol := by
|
||||
intro i
|
||||
simp at i
|
||||
match i with
|
||||
| 0 => rfl
|
||||
| 1 => rfl
|
||||
| 2 => rfl
|
||||
| 3 => rfl
|
||||
quadSol := by
|
||||
intro i
|
||||
simp at i
|
||||
match i with
|
||||
| 0 => rfl
|
||||
cubicSol := by rfl
|
||||
|
||||
/-- The hypercharge for `n` family. -/
|
||||
@[simps!]
|
||||
def Y (n : ℕ) : (PlusU1 n).Sols :=
|
||||
familyUniversalAF n Y₁
|
||||
|
||||
namespace Y
|
||||
|
||||
variable {n : ℕ}
|
||||
|
||||
lemma on_quadBiLin (S : (PlusU1 n).charges) :
|
||||
quadBiLin ((Y n).val, S) = accYY S := by
|
||||
erw [familyUniversal_quadBiLin]
|
||||
rw [accYY_decomp]
|
||||
simp
|
||||
ring_nf
|
||||
simp
|
||||
|
||||
lemma on_quadBiLin_AFL (S : (PlusU1 n).LinSols) : quadBiLin ((Y n).val, S.val) = 0 := by
|
||||
rw [on_quadBiLin]
|
||||
rw [YYsol S]
|
||||
|
||||
|
||||
lemma add_AFL_quad (S : (PlusU1 n).LinSols) (a b : ℚ) :
|
||||
accQuad (a • S.val + b • (Y n).val) = a ^ 2 * accQuad S.val := by
|
||||
erw [BiLinearSymm.toHomogeneousQuad_add, quadSol (b • (Y n)).1]
|
||||
rw [quadBiLin.map_smul₁, quadBiLin.map_smul₂, quadBiLin.swap, on_quadBiLin_AFL]
|
||||
erw [accQuad.map_smul]
|
||||
simp
|
||||
|
||||
lemma add_quad (S : (PlusU1 n).QuadSols) (a b : ℚ) :
|
||||
accQuad (a • S.val + b • (Y n).val) = 0 := by
|
||||
rw [add_AFL_quad, quadSol S]
|
||||
simp
|
||||
|
||||
/-- The `QuadSol` obtained by adding hypercharge to a `QuadSol`. -/
|
||||
def addQuad (S : (PlusU1 n).QuadSols) (a b : ℚ) : (PlusU1 n).QuadSols :=
|
||||
linearToQuad (a • S.1 + b • (Y n).1.1) (add_quad S a b)
|
||||
|
||||
lemma addQuad_zero (S : (PlusU1 n).QuadSols) (a : ℚ): addQuad S a 0 = a • S := by
|
||||
simp [addQuad, linearToQuad]
|
||||
rfl
|
||||
|
||||
lemma on_cubeTriLin (S : (PlusU1 n).charges) :
|
||||
cubeTriLin ((Y n).val, (Y n).val, S) = 6 * accYY S := by
|
||||
erw [familyUniversal_cubeTriLin']
|
||||
rw [accYY_decomp]
|
||||
simp
|
||||
ring
|
||||
|
||||
lemma on_cubeTriLin_AFL (S : (PlusU1 n).LinSols) :
|
||||
cubeTriLin ((Y n).val, (Y n).val, S.val) = 0 := by
|
||||
rw [on_cubeTriLin]
|
||||
rw [YYsol S]
|
||||
simp
|
||||
|
||||
lemma on_cubeTriLin' (S : (PlusU1 n).charges) :
|
||||
cubeTriLin ((Y n).val, S, S) = 6 * accQuad S := by
|
||||
erw [familyUniversal_cubeTriLin]
|
||||
rw [accQuad_decomp]
|
||||
simp
|
||||
ring_nf
|
||||
|
||||
lemma on_cubeTriLin'_ALQ (S : (PlusU1 n).QuadSols) :
|
||||
cubeTriLin ((Y n).val, S.val, S.val) = 0 := by
|
||||
rw [on_cubeTriLin']
|
||||
rw [quadSol S]
|
||||
simp
|
||||
|
||||
lemma add_AFL_cube (S : (PlusU1 n).LinSols) (a b : ℚ) :
|
||||
accCube (a • S.val + b • (Y n).val) =
|
||||
a ^ 2 * (a * accCube S.val + 3 * b * cubeTriLin (S.val, S.val, (Y n).val)) := by
|
||||
erw [TriLinearSymm.toCubic_add, cubeSol (b • (Y n)), accCube.map_smul]
|
||||
repeat rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂, cubeTriLin.map_smul₃]
|
||||
rw [on_cubeTriLin_AFL]
|
||||
simp
|
||||
ring
|
||||
|
||||
lemma add_AFQ_cube (S : (PlusU1 n).QuadSols) (a b : ℚ) :
|
||||
accCube (a • S.val + b • (Y n).val) = a ^ 3 * accCube S.val := by
|
||||
rw [add_AFL_cube]
|
||||
rw [cubeTriLin.swap₃]
|
||||
rw [on_cubeTriLin'_ALQ]
|
||||
ring
|
||||
|
||||
lemma add_AF_cube (S : (PlusU1 n).Sols) (a b : ℚ) :
|
||||
accCube (a • S.val + b • (Y n).val) = 0 := by
|
||||
rw [add_AFQ_cube]
|
||||
rw [cubeSol S]
|
||||
simp
|
||||
|
||||
/-- The `Sol` obtained by adding hypercharge to a `Sol`. -/
|
||||
def addCube (S : (PlusU1 n).Sols) (a b : ℚ) : (PlusU1 n).Sols :=
|
||||
quadToAF (addQuad S.1 a b) (add_AF_cube S a b)
|
||||
|
||||
|
||||
end Y
|
||||
end PlusU1
|
||||
end SMRHN
|
146
HepLean/AnomalyCancellation/SMNu/PlusU1/QuadSol.lean
Normal file
146
HepLean/AnomalyCancellation/SMNu/PlusU1/QuadSol.lean
Normal file
|
@ -0,0 +1,146 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.AnomalyCancellation.SMNu.PlusU1.Basic
|
||||
import HepLean.AnomalyCancellation.SMNu.PlusU1.FamilyMaps
|
||||
/-!
|
||||
# Properties of Quad Sols for SM with RHN
|
||||
|
||||
We give a series of properties held by solutions to the quadratic equation.
|
||||
|
||||
In particular given a quad solution we define a map from linear solutions to quadratic solutions
|
||||
and show that it is a surjection. The main reference for this is:
|
||||
|
||||
- https://arxiv.org/abs/2006.03588
|
||||
|
||||
-/
|
||||
|
||||
universe v u
|
||||
|
||||
namespace SMRHN
|
||||
namespace PlusU1
|
||||
|
||||
open SMνCharges
|
||||
open SMνACCs
|
||||
open BigOperators
|
||||
|
||||
namespace QuadSol
|
||||
|
||||
variable {n : ℕ}
|
||||
variable (C : (PlusU1 n).QuadSols)
|
||||
|
||||
lemma add_AFL_quad (S : (PlusU1 n).LinSols) (a b : ℚ) :
|
||||
accQuad (a • S.val + b • C.val) =
|
||||
a * (a * accQuad S.val + 2 * b * quadBiLin (S.val, C.val)) := by
|
||||
erw [BiLinearSymm.toHomogeneousQuad_add, quadSol (b • C)]
|
||||
rw [quadBiLin.map_smul₁, quadBiLin.map_smul₂]
|
||||
erw [accQuad.map_smul]
|
||||
ring
|
||||
|
||||
/-- A helper function for what comes later. -/
|
||||
def α₁ (S : (PlusU1 n).LinSols) : ℚ := - 2 * quadBiLin (S.val, C.val)
|
||||
|
||||
/-- A helper function for what comes later. -/
|
||||
def α₂ (S : (PlusU1 n).LinSols) : ℚ := accQuad S.val
|
||||
|
||||
lemma α₂_AFQ (S : (PlusU1 n).QuadSols) : α₂ S.1 = 0 := quadSol S
|
||||
|
||||
lemma accQuad_α₁_α₂ (S : (PlusU1 n).LinSols) :
|
||||
accQuad ((α₁ C S) • S + α₂ S • C.1).val = 0 := by
|
||||
erw [add_AFL_quad]
|
||||
rw [α₁, α₂]
|
||||
ring
|
||||
|
||||
lemma accQuad_α₁_α₂_zero (S : (PlusU1 n).LinSols) (h1 : α₁ C S = 0)
|
||||
(h2 : α₂ S = 0) (a b : ℚ) : accQuad (a • S + b • C.1).val = 0 := by
|
||||
erw [add_AFL_quad]
|
||||
simp [α₁, α₂] at h1 h2
|
||||
field_simp [h1, h2]
|
||||
|
||||
/-- The construction of a `QuadSol` from a `LinSols` in the generic case. -/
|
||||
def genericToQuad (S : (PlusU1 n).LinSols) :
|
||||
(PlusU1 n).QuadSols :=
|
||||
linearToQuad ((α₁ C S) • S + α₂ S • C.1) (accQuad_α₁_α₂ C S)
|
||||
|
||||
lemma genericToQuad_on_quad (S : (PlusU1 n).QuadSols) :
|
||||
genericToQuad C S.1 = (α₁ C S.1) • S := by
|
||||
apply ACCSystemQuad.QuadSols.ext
|
||||
change ((α₁ C S.1) • S.val + α₂ S.1 • C.val) = (α₁ C S.1) • S.val
|
||||
rw [α₂_AFQ]
|
||||
simp
|
||||
|
||||
lemma genericToQuad_neq_zero (S : (PlusU1 n).QuadSols) (h : α₁ C S.1 ≠ 0) :
|
||||
(α₁ C S.1)⁻¹ • genericToQuad C S.1 = S := by
|
||||
rw [genericToQuad_on_quad, smul_smul, inv_mul_cancel h, one_smul]
|
||||
|
||||
|
||||
/-- The construction of a `QuadSol` from a `LinSols` in the special case when `α₁ C S = 0` and
|
||||
`α₂ S = 0`. -/
|
||||
def specialToQuad (S : (PlusU1 n).LinSols) (a b : ℚ) (h1 : α₁ C S = 0)
|
||||
(h2 : α₂ S = 0) : (PlusU1 n).QuadSols :=
|
||||
linearToQuad (a • S + b • C.1) (accQuad_α₁_α₂_zero C S h1 h2 a b)
|
||||
|
||||
lemma special_on_quad (S : (PlusU1 n).QuadSols) (h1 : α₁ C S.1 = 0) :
|
||||
specialToQuad C S.1 1 0 h1 (α₂_AFQ S) = S := by
|
||||
apply ACCSystemQuad.QuadSols.ext
|
||||
change (1 • S.val + 0 • C.val) = S.val
|
||||
simp
|
||||
|
||||
/-- The construction of a `QuadSols` from a `LinSols` and two rationals taking account of the
|
||||
generic and special cases. This function is a surjection. -/
|
||||
def toQuad : (PlusU1 n).LinSols × ℚ × ℚ → (PlusU1 n).QuadSols := fun S =>
|
||||
if h : α₁ C S.1 = 0 ∧ α₂ S.1 = 0 then
|
||||
specialToQuad C S.1 S.2.1 S.2.2 h.1 h.2
|
||||
else
|
||||
S.2.1 • genericToQuad C S.1
|
||||
|
||||
/-- A function from `QuadSols` to `LinSols × ℚ × ℚ` which is a right inverse to `toQuad`. -/
|
||||
@[simp]
|
||||
def toQuadInv : (PlusU1 n).QuadSols → (PlusU1 n).LinSols × ℚ × ℚ := fun S =>
|
||||
if α₁ C S.1 = 0 then
|
||||
(S.1, 1, 0)
|
||||
else
|
||||
(S.1, (α₁ C S.1)⁻¹, 0)
|
||||
|
||||
lemma toQuadInv_fst (S : (PlusU1 n).QuadSols) :
|
||||
(toQuadInv C S).1 = S.1 := by
|
||||
rw [toQuadInv]
|
||||
split
|
||||
rfl
|
||||
rfl
|
||||
|
||||
lemma toQuadInv_α₁_α₂ (S : (PlusU1 n).QuadSols) :
|
||||
α₁ C S.1 = 0 ↔ α₁ C (toQuadInv C S).1 = 0 ∧ α₂ (toQuadInv C S).1 = 0 := by
|
||||
rw [toQuadInv_fst, α₂_AFQ]
|
||||
simp
|
||||
|
||||
lemma toQuadInv_special (S : (PlusU1 n).QuadSols) (h : α₁ C S.1 = 0) :
|
||||
specialToQuad C (toQuadInv C S).1 (toQuadInv C S).2.1 (toQuadInv C S).2.2
|
||||
((toQuadInv_α₁_α₂ C S).mp h).1 ((toQuadInv_α₁_α₂ C S).mp h).2 = S := by
|
||||
simp only [toQuadInv_fst]
|
||||
rw [show (toQuadInv C S).2.1 = 1 by rw [toQuadInv, if_pos h]]
|
||||
rw [show (toQuadInv C S).2.2 = 0 by rw [toQuadInv, if_pos h]]
|
||||
rw [special_on_quad]
|
||||
|
||||
lemma toQuadInv_generic (S : (PlusU1 n).QuadSols) (h : α₁ C S.1 ≠ 0) :
|
||||
(toQuadInv C S).2.1 • genericToQuad C (toQuadInv C S).1 = S := by
|
||||
simp only [toQuadInv_fst]
|
||||
rw [show (toQuadInv C S).2.1 = (α₁ C S.1)⁻¹ by rw [toQuadInv, if_neg h]]
|
||||
rw [genericToQuad_neq_zero C S h]
|
||||
|
||||
lemma toQuad_rightInverse : Function.RightInverse (@toQuadInv n C) (toQuad C) := by
|
||||
intro S
|
||||
by_cases h : α₁ C S.1 = 0
|
||||
rw [toQuad, dif_pos ((toQuadInv_α₁_α₂ C S).mp h)]
|
||||
exact toQuadInv_special C S h
|
||||
rw [toQuad, dif_neg ((toQuadInv_α₁_α₂ C S).mpr.mt h)]
|
||||
exact toQuadInv_generic C S h
|
||||
|
||||
theorem toQuad_surjective : Function.Surjective (toQuad C) :=
|
||||
Function.RightInverse.surjective (toQuad_rightInverse C)
|
||||
|
||||
end QuadSol
|
||||
end PlusU1
|
||||
end SMRHN
|
147
HepLean/AnomalyCancellation/SMNu/PlusU1/QuadSolToSol.lean
Normal file
147
HepLean/AnomalyCancellation/SMNu/PlusU1/QuadSolToSol.lean
Normal file
|
@ -0,0 +1,147 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.AnomalyCancellation.SMNu.PlusU1.Basic
|
||||
import HepLean.AnomalyCancellation.SMNu.PlusU1.BMinusL
|
||||
/-!
|
||||
# Solutions from quad solutions
|
||||
|
||||
We use $B-L$ to form a surjective map from quad solutions to solutions. The main reference
|
||||
for this material is:
|
||||
|
||||
- https://arxiv.org/abs/2006.03588
|
||||
|
||||
-/
|
||||
|
||||
universe v u
|
||||
|
||||
namespace SMRHN
|
||||
namespace PlusU1
|
||||
|
||||
namespace QuadSolToSol
|
||||
|
||||
open SMνCharges
|
||||
open SMνACCs
|
||||
open BigOperators
|
||||
|
||||
variable {n : ℕ}
|
||||
/-- A helper function for what follows. -/
|
||||
@[simp]
|
||||
def α₁ (S : (PlusU1 n).QuadSols) : ℚ := - 3 * cubeTriLin (S.val, S.val, (BL n).val)
|
||||
|
||||
/-- A helper function for what follows. -/
|
||||
@[simp]
|
||||
def α₂ (S : (PlusU1 n).QuadSols) : ℚ := accCube S.val
|
||||
|
||||
lemma cube_α₁_α₂_zero (S : (PlusU1 n).QuadSols) (a b : ℚ) (h1 : α₁ S = 0) (h2 : α₂ S = 0) :
|
||||
accCube (BL.addQuad S a b).val = 0 := by
|
||||
erw [BL.add_AFL_cube]
|
||||
simp_all
|
||||
|
||||
lemma α₂_AF (S : (PlusU1 n).Sols) : α₂ S.toQuadSols = 0 := S.2
|
||||
|
||||
lemma BL_add_α₁_α₂_cube (S : (PlusU1 n).QuadSols) :
|
||||
accCube (BL.addQuad S (α₁ S) (α₂ S)).val = 0 := by
|
||||
erw [BL.add_AFL_cube]
|
||||
field_simp
|
||||
ring_nf
|
||||
|
||||
lemma BL_add_α₁_α₂_AF (S : (PlusU1 n).Sols) :
|
||||
BL.addQuad S.1 (α₁ S.1) (α₂ S.1) = (α₁ S.1) • S.1 := by
|
||||
rw [α₂_AF, BL.addQuad_zero]
|
||||
|
||||
/-- The construction of a `Sol` from a `QuadSol` in the generic case. -/
|
||||
def generic (S : (PlusU1 n).QuadSols) : (PlusU1 n).Sols :=
|
||||
quadToAF (BL.addQuad S (α₁ S) (α₂ S)) (BL_add_α₁_α₂_cube S)
|
||||
|
||||
lemma generic_on_AF (S : (PlusU1 n).Sols) : generic S.1 = (α₁ S.1) • S := by
|
||||
apply ACCSystem.Sols.ext
|
||||
change (BL.addQuad S.1 (α₁ S.1) (α₂ S.1)).val = _
|
||||
rw [BL_add_α₁_α₂_AF]
|
||||
rfl
|
||||
|
||||
lemma generic_on_AF_α₁_ne_zero (S : (PlusU1 n).Sols) (h : α₁ S.1 ≠ 0) :
|
||||
(α₁ S.1)⁻¹ • generic S.1 = S := by
|
||||
rw [generic_on_AF, smul_smul, inv_mul_cancel h, one_smul]
|
||||
|
||||
/-- The construction of a `Sol` from a `QuadSol` in the case when `α₁ S = 0` and `α₂ S = 0`. -/
|
||||
def special (S : (PlusU1 n).QuadSols) (a b : ℚ) (h1 : α₁ S = 0) (h2 : α₂ S = 0) :
|
||||
(PlusU1 n).Sols :=
|
||||
quadToAF (BL.addQuad S a b) (cube_α₁_α₂_zero S a b h1 h2)
|
||||
|
||||
lemma special_on_AF (S : (PlusU1 n).Sols) (h1 : α₁ S.1 = 0) :
|
||||
special S.1 1 0 h1 (α₂_AF S) = S := by
|
||||
apply ACCSystem.Sols.ext
|
||||
change (BL.addQuad S.1 1 0).val = _
|
||||
rw [BL.addQuad_zero]
|
||||
simp
|
||||
|
||||
|
||||
end QuadSolToSol
|
||||
|
||||
|
||||
open QuadSolToSol
|
||||
/-- A map from `QuadSols × ℚ × ℚ` to `Sols` taking account of the special and generic cases.
|
||||
We will show that this map is a surjection. -/
|
||||
def quadSolToSol {n : ℕ} : (PlusU1 n).QuadSols × ℚ × ℚ → (PlusU1 n).Sols := fun S =>
|
||||
if h1 : α₁ S.1 = 0 ∧ α₂ S.1 = 0 then
|
||||
special S.1 S.2.1 S.2.2 h1.1 h1.2
|
||||
else
|
||||
S.2.1 • generic S.1
|
||||
|
||||
/-- A map from `Sols` to `QuadSols × ℚ × ℚ` which forms a right-inverse to `quadSolToSol`, as
|
||||
shown in `quadSolToSolInv_rightInverse`. -/
|
||||
def quadSolToSolInv {n : ℕ} : (PlusU1 n).Sols → (PlusU1 n).QuadSols × ℚ × ℚ :=
|
||||
fun S =>
|
||||
if α₁ S.1 = 0 then
|
||||
(S.1, 1, 0)
|
||||
else
|
||||
(S.1, (α₁ S.1)⁻¹, 0)
|
||||
|
||||
lemma quadSolToSolInv_1 (S : (PlusU1 n).Sols) :
|
||||
(quadSolToSolInv S).1 = S.1 := by
|
||||
simp [quadSolToSolInv]
|
||||
split
|
||||
rfl
|
||||
rfl
|
||||
|
||||
lemma quadSolToSolInv_α₁_α₂_zero (S : (PlusU1 n).Sols) (h : α₁ S.1 = 0) :
|
||||
α₁ (quadSolToSolInv S).1 = 0 ∧ α₂ (quadSolToSolInv S).1 = 0 := by
|
||||
rw [quadSolToSolInv_1, α₂_AF S, h]
|
||||
simp
|
||||
|
||||
lemma quadSolToSolInv_α₁_α₂_neq_zero (S : (PlusU1 n).Sols) (h : α₁ S.1 ≠ 0) :
|
||||
¬ (α₁ (quadSolToSolInv S).1 = 0 ∧ α₂ (quadSolToSolInv S).1 = 0) := by
|
||||
rw [not_and, quadSolToSolInv_1, α₂_AF S]
|
||||
intro hn
|
||||
simp_all
|
||||
|
||||
lemma quadSolToSolInv_special (S : (PlusU1 n).Sols) (h : α₁ S.1 = 0) :
|
||||
special (quadSolToSolInv S).1 (quadSolToSolInv S).2.1 (quadSolToSolInv S).2.2
|
||||
(quadSolToSolInv_α₁_α₂_zero S h).1 (quadSolToSolInv_α₁_α₂_zero S h).2 = S := by
|
||||
simp [quadSolToSolInv_1]
|
||||
rw [show (quadSolToSolInv S).2.1 = 1 by rw [quadSolToSolInv, if_pos h]]
|
||||
rw [show (quadSolToSolInv S).2.2 = 0 by rw [quadSolToSolInv, if_pos h]]
|
||||
rw [special_on_AF]
|
||||
|
||||
lemma quadSolToSolInv_generic (S : (PlusU1 n).Sols) (h : α₁ S.1 ≠ 0) :
|
||||
(quadSolToSolInv S).2.1 • generic (quadSolToSolInv S).1 = S := by
|
||||
simp [quadSolToSolInv_1]
|
||||
rw [show (quadSolToSolInv S).2.1 = (α₁ S.1)⁻¹ by rw [quadSolToSolInv, if_neg h]]
|
||||
rw [generic_on_AF_α₁_ne_zero S h]
|
||||
|
||||
lemma quadSolToSolInv_rightInverse : Function.RightInverse (@quadSolToSolInv n) quadSolToSol := by
|
||||
intro S
|
||||
by_cases h : α₁ S.1 = 0
|
||||
rw [quadSolToSol, dif_pos (quadSolToSolInv_α₁_α₂_zero S h)]
|
||||
exact quadSolToSolInv_special S h
|
||||
rw [quadSolToSol, dif_neg (quadSolToSolInv_α₁_α₂_neq_zero S h)]
|
||||
exact quadSolToSolInv_generic S h
|
||||
|
||||
theorem quadSolToSol_surjective : Function.Surjective (@quadSolToSol n) :=
|
||||
Function.RightInverse.surjective quadSolToSolInv_rightInverse
|
||||
|
||||
end PlusU1
|
||||
end SMRHN
|
Loading…
Add table
Add a link
Reference in a new issue