feat: Add theorems related to Sols
This commit is contained in:
parent
7f447c6df8
commit
ec47df1493
5 changed files with 560 additions and 0 deletions
146
HepLean/AnomalyCancellation/SMNu/PlusU1/QuadSol.lean
Normal file
146
HepLean/AnomalyCancellation/SMNu/PlusU1/QuadSol.lean
Normal file
|
@ -0,0 +1,146 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.AnomalyCancellation.SMNu.PlusU1.Basic
|
||||
import HepLean.AnomalyCancellation.SMNu.PlusU1.FamilyMaps
|
||||
/-!
|
||||
# Properties of Quad Sols for SM with RHN
|
||||
|
||||
We give a series of properties held by solutions to the quadratic equation.
|
||||
|
||||
In particular given a quad solution we define a map from linear solutions to quadratic solutions
|
||||
and show that it is a surjection. The main reference for this is:
|
||||
|
||||
- https://arxiv.org/abs/2006.03588
|
||||
|
||||
-/
|
||||
|
||||
universe v u
|
||||
|
||||
namespace SMRHN
|
||||
namespace PlusU1
|
||||
|
||||
open SMνCharges
|
||||
open SMνACCs
|
||||
open BigOperators
|
||||
|
||||
namespace QuadSol
|
||||
|
||||
variable {n : ℕ}
|
||||
variable (C : (PlusU1 n).QuadSols)
|
||||
|
||||
lemma add_AFL_quad (S : (PlusU1 n).LinSols) (a b : ℚ) :
|
||||
accQuad (a • S.val + b • C.val) =
|
||||
a * (a * accQuad S.val + 2 * b * quadBiLin (S.val, C.val)) := by
|
||||
erw [BiLinearSymm.toHomogeneousQuad_add, quadSol (b • C)]
|
||||
rw [quadBiLin.map_smul₁, quadBiLin.map_smul₂]
|
||||
erw [accQuad.map_smul]
|
||||
ring
|
||||
|
||||
/-- A helper function for what comes later. -/
|
||||
def α₁ (S : (PlusU1 n).LinSols) : ℚ := - 2 * quadBiLin (S.val, C.val)
|
||||
|
||||
/-- A helper function for what comes later. -/
|
||||
def α₂ (S : (PlusU1 n).LinSols) : ℚ := accQuad S.val
|
||||
|
||||
lemma α₂_AFQ (S : (PlusU1 n).QuadSols) : α₂ S.1 = 0 := quadSol S
|
||||
|
||||
lemma accQuad_α₁_α₂ (S : (PlusU1 n).LinSols) :
|
||||
accQuad ((α₁ C S) • S + α₂ S • C.1).val = 0 := by
|
||||
erw [add_AFL_quad]
|
||||
rw [α₁, α₂]
|
||||
ring
|
||||
|
||||
lemma accQuad_α₁_α₂_zero (S : (PlusU1 n).LinSols) (h1 : α₁ C S = 0)
|
||||
(h2 : α₂ S = 0) (a b : ℚ) : accQuad (a • S + b • C.1).val = 0 := by
|
||||
erw [add_AFL_quad]
|
||||
simp [α₁, α₂] at h1 h2
|
||||
field_simp [h1, h2]
|
||||
|
||||
/-- The construction of a `QuadSol` from a `LinSols` in the generic case. -/
|
||||
def genericToQuad (S : (PlusU1 n).LinSols) :
|
||||
(PlusU1 n).QuadSols :=
|
||||
linearToQuad ((α₁ C S) • S + α₂ S • C.1) (accQuad_α₁_α₂ C S)
|
||||
|
||||
lemma genericToQuad_on_quad (S : (PlusU1 n).QuadSols) :
|
||||
genericToQuad C S.1 = (α₁ C S.1) • S := by
|
||||
apply ACCSystemQuad.QuadSols.ext
|
||||
change ((α₁ C S.1) • S.val + α₂ S.1 • C.val) = (α₁ C S.1) • S.val
|
||||
rw [α₂_AFQ]
|
||||
simp
|
||||
|
||||
lemma genericToQuad_neq_zero (S : (PlusU1 n).QuadSols) (h : α₁ C S.1 ≠ 0) :
|
||||
(α₁ C S.1)⁻¹ • genericToQuad C S.1 = S := by
|
||||
rw [genericToQuad_on_quad, smul_smul, inv_mul_cancel h, one_smul]
|
||||
|
||||
|
||||
/-- The construction of a `QuadSol` from a `LinSols` in the special case when `α₁ C S = 0` and
|
||||
`α₂ S = 0`. -/
|
||||
def specialToQuad (S : (PlusU1 n).LinSols) (a b : ℚ) (h1 : α₁ C S = 0)
|
||||
(h2 : α₂ S = 0) : (PlusU1 n).QuadSols :=
|
||||
linearToQuad (a • S + b • C.1) (accQuad_α₁_α₂_zero C S h1 h2 a b)
|
||||
|
||||
lemma special_on_quad (S : (PlusU1 n).QuadSols) (h1 : α₁ C S.1 = 0) :
|
||||
specialToQuad C S.1 1 0 h1 (α₂_AFQ S) = S := by
|
||||
apply ACCSystemQuad.QuadSols.ext
|
||||
change (1 • S.val + 0 • C.val) = S.val
|
||||
simp
|
||||
|
||||
/-- The construction of a `QuadSols` from a `LinSols` and two rationals taking account of the
|
||||
generic and special cases. This function is a surjection. -/
|
||||
def toQuad : (PlusU1 n).LinSols × ℚ × ℚ → (PlusU1 n).QuadSols := fun S =>
|
||||
if h : α₁ C S.1 = 0 ∧ α₂ S.1 = 0 then
|
||||
specialToQuad C S.1 S.2.1 S.2.2 h.1 h.2
|
||||
else
|
||||
S.2.1 • genericToQuad C S.1
|
||||
|
||||
/-- A function from `QuadSols` to `LinSols × ℚ × ℚ` which is a right inverse to `toQuad`. -/
|
||||
@[simp]
|
||||
def toQuadInv : (PlusU1 n).QuadSols → (PlusU1 n).LinSols × ℚ × ℚ := fun S =>
|
||||
if α₁ C S.1 = 0 then
|
||||
(S.1, 1, 0)
|
||||
else
|
||||
(S.1, (α₁ C S.1)⁻¹, 0)
|
||||
|
||||
lemma toQuadInv_fst (S : (PlusU1 n).QuadSols) :
|
||||
(toQuadInv C S).1 = S.1 := by
|
||||
rw [toQuadInv]
|
||||
split
|
||||
rfl
|
||||
rfl
|
||||
|
||||
lemma toQuadInv_α₁_α₂ (S : (PlusU1 n).QuadSols) :
|
||||
α₁ C S.1 = 0 ↔ α₁ C (toQuadInv C S).1 = 0 ∧ α₂ (toQuadInv C S).1 = 0 := by
|
||||
rw [toQuadInv_fst, α₂_AFQ]
|
||||
simp
|
||||
|
||||
lemma toQuadInv_special (S : (PlusU1 n).QuadSols) (h : α₁ C S.1 = 0) :
|
||||
specialToQuad C (toQuadInv C S).1 (toQuadInv C S).2.1 (toQuadInv C S).2.2
|
||||
((toQuadInv_α₁_α₂ C S).mp h).1 ((toQuadInv_α₁_α₂ C S).mp h).2 = S := by
|
||||
simp only [toQuadInv_fst]
|
||||
rw [show (toQuadInv C S).2.1 = 1 by rw [toQuadInv, if_pos h]]
|
||||
rw [show (toQuadInv C S).2.2 = 0 by rw [toQuadInv, if_pos h]]
|
||||
rw [special_on_quad]
|
||||
|
||||
lemma toQuadInv_generic (S : (PlusU1 n).QuadSols) (h : α₁ C S.1 ≠ 0) :
|
||||
(toQuadInv C S).2.1 • genericToQuad C (toQuadInv C S).1 = S := by
|
||||
simp only [toQuadInv_fst]
|
||||
rw [show (toQuadInv C S).2.1 = (α₁ C S.1)⁻¹ by rw [toQuadInv, if_neg h]]
|
||||
rw [genericToQuad_neq_zero C S h]
|
||||
|
||||
lemma toQuad_rightInverse : Function.RightInverse (@toQuadInv n C) (toQuad C) := by
|
||||
intro S
|
||||
by_cases h : α₁ C S.1 = 0
|
||||
rw [toQuad, dif_pos ((toQuadInv_α₁_α₂ C S).mp h)]
|
||||
exact toQuadInv_special C S h
|
||||
rw [toQuad, dif_neg ((toQuadInv_α₁_α₂ C S).mpr.mt h)]
|
||||
exact toQuadInv_generic C S h
|
||||
|
||||
theorem toQuad_surjective : Function.Surjective (toQuad C) :=
|
||||
Function.RightInverse.surjective (toQuad_rightInverse C)
|
||||
|
||||
end QuadSol
|
||||
end PlusU1
|
||||
end SMRHN
|
Loading…
Add table
Add a link
Reference in a new issue