feat: Add theorems related to Sols
This commit is contained in:
parent
7f447c6df8
commit
ec47df1493
5 changed files with 560 additions and 0 deletions
147
HepLean/AnomalyCancellation/SMNu/PlusU1/QuadSolToSol.lean
Normal file
147
HepLean/AnomalyCancellation/SMNu/PlusU1/QuadSolToSol.lean
Normal file
|
@ -0,0 +1,147 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.AnomalyCancellation.SMNu.PlusU1.Basic
|
||||
import HepLean.AnomalyCancellation.SMNu.PlusU1.BMinusL
|
||||
/-!
|
||||
# Solutions from quad solutions
|
||||
|
||||
We use $B-L$ to form a surjective map from quad solutions to solutions. The main reference
|
||||
for this material is:
|
||||
|
||||
- https://arxiv.org/abs/2006.03588
|
||||
|
||||
-/
|
||||
|
||||
universe v u
|
||||
|
||||
namespace SMRHN
|
||||
namespace PlusU1
|
||||
|
||||
namespace QuadSolToSol
|
||||
|
||||
open SMνCharges
|
||||
open SMνACCs
|
||||
open BigOperators
|
||||
|
||||
variable {n : ℕ}
|
||||
/-- A helper function for what follows. -/
|
||||
@[simp]
|
||||
def α₁ (S : (PlusU1 n).QuadSols) : ℚ := - 3 * cubeTriLin (S.val, S.val, (BL n).val)
|
||||
|
||||
/-- A helper function for what follows. -/
|
||||
@[simp]
|
||||
def α₂ (S : (PlusU1 n).QuadSols) : ℚ := accCube S.val
|
||||
|
||||
lemma cube_α₁_α₂_zero (S : (PlusU1 n).QuadSols) (a b : ℚ) (h1 : α₁ S = 0) (h2 : α₂ S = 0) :
|
||||
accCube (BL.addQuad S a b).val = 0 := by
|
||||
erw [BL.add_AFL_cube]
|
||||
simp_all
|
||||
|
||||
lemma α₂_AF (S : (PlusU1 n).Sols) : α₂ S.toQuadSols = 0 := S.2
|
||||
|
||||
lemma BL_add_α₁_α₂_cube (S : (PlusU1 n).QuadSols) :
|
||||
accCube (BL.addQuad S (α₁ S) (α₂ S)).val = 0 := by
|
||||
erw [BL.add_AFL_cube]
|
||||
field_simp
|
||||
ring_nf
|
||||
|
||||
lemma BL_add_α₁_α₂_AF (S : (PlusU1 n).Sols) :
|
||||
BL.addQuad S.1 (α₁ S.1) (α₂ S.1) = (α₁ S.1) • S.1 := by
|
||||
rw [α₂_AF, BL.addQuad_zero]
|
||||
|
||||
/-- The construction of a `Sol` from a `QuadSol` in the generic case. -/
|
||||
def generic (S : (PlusU1 n).QuadSols) : (PlusU1 n).Sols :=
|
||||
quadToAF (BL.addQuad S (α₁ S) (α₂ S)) (BL_add_α₁_α₂_cube S)
|
||||
|
||||
lemma generic_on_AF (S : (PlusU1 n).Sols) : generic S.1 = (α₁ S.1) • S := by
|
||||
apply ACCSystem.Sols.ext
|
||||
change (BL.addQuad S.1 (α₁ S.1) (α₂ S.1)).val = _
|
||||
rw [BL_add_α₁_α₂_AF]
|
||||
rfl
|
||||
|
||||
lemma generic_on_AF_α₁_ne_zero (S : (PlusU1 n).Sols) (h : α₁ S.1 ≠ 0) :
|
||||
(α₁ S.1)⁻¹ • generic S.1 = S := by
|
||||
rw [generic_on_AF, smul_smul, inv_mul_cancel h, one_smul]
|
||||
|
||||
/-- The construction of a `Sol` from a `QuadSol` in the case when `α₁ S = 0` and `α₂ S = 0`. -/
|
||||
def special (S : (PlusU1 n).QuadSols) (a b : ℚ) (h1 : α₁ S = 0) (h2 : α₂ S = 0) :
|
||||
(PlusU1 n).Sols :=
|
||||
quadToAF (BL.addQuad S a b) (cube_α₁_α₂_zero S a b h1 h2)
|
||||
|
||||
lemma special_on_AF (S : (PlusU1 n).Sols) (h1 : α₁ S.1 = 0) :
|
||||
special S.1 1 0 h1 (α₂_AF S) = S := by
|
||||
apply ACCSystem.Sols.ext
|
||||
change (BL.addQuad S.1 1 0).val = _
|
||||
rw [BL.addQuad_zero]
|
||||
simp
|
||||
|
||||
|
||||
end QuadSolToSol
|
||||
|
||||
|
||||
open QuadSolToSol
|
||||
/-- A map from `QuadSols × ℚ × ℚ` to `Sols` taking account of the special and generic cases.
|
||||
We will show that this map is a surjection. -/
|
||||
def quadSolToSol {n : ℕ} : (PlusU1 n).QuadSols × ℚ × ℚ → (PlusU1 n).Sols := fun S =>
|
||||
if h1 : α₁ S.1 = 0 ∧ α₂ S.1 = 0 then
|
||||
special S.1 S.2.1 S.2.2 h1.1 h1.2
|
||||
else
|
||||
S.2.1 • generic S.1
|
||||
|
||||
/-- A map from `Sols` to `QuadSols × ℚ × ℚ` which forms a right-inverse to `quadSolToSol`, as
|
||||
shown in `quadSolToSolInv_rightInverse`. -/
|
||||
def quadSolToSolInv {n : ℕ} : (PlusU1 n).Sols → (PlusU1 n).QuadSols × ℚ × ℚ :=
|
||||
fun S =>
|
||||
if α₁ S.1 = 0 then
|
||||
(S.1, 1, 0)
|
||||
else
|
||||
(S.1, (α₁ S.1)⁻¹, 0)
|
||||
|
||||
lemma quadSolToSolInv_1 (S : (PlusU1 n).Sols) :
|
||||
(quadSolToSolInv S).1 = S.1 := by
|
||||
simp [quadSolToSolInv]
|
||||
split
|
||||
rfl
|
||||
rfl
|
||||
|
||||
lemma quadSolToSolInv_α₁_α₂_zero (S : (PlusU1 n).Sols) (h : α₁ S.1 = 0) :
|
||||
α₁ (quadSolToSolInv S).1 = 0 ∧ α₂ (quadSolToSolInv S).1 = 0 := by
|
||||
rw [quadSolToSolInv_1, α₂_AF S, h]
|
||||
simp
|
||||
|
||||
lemma quadSolToSolInv_α₁_α₂_neq_zero (S : (PlusU1 n).Sols) (h : α₁ S.1 ≠ 0) :
|
||||
¬ (α₁ (quadSolToSolInv S).1 = 0 ∧ α₂ (quadSolToSolInv S).1 = 0) := by
|
||||
rw [not_and, quadSolToSolInv_1, α₂_AF S]
|
||||
intro hn
|
||||
simp_all
|
||||
|
||||
lemma quadSolToSolInv_special (S : (PlusU1 n).Sols) (h : α₁ S.1 = 0) :
|
||||
special (quadSolToSolInv S).1 (quadSolToSolInv S).2.1 (quadSolToSolInv S).2.2
|
||||
(quadSolToSolInv_α₁_α₂_zero S h).1 (quadSolToSolInv_α₁_α₂_zero S h).2 = S := by
|
||||
simp [quadSolToSolInv_1]
|
||||
rw [show (quadSolToSolInv S).2.1 = 1 by rw [quadSolToSolInv, if_pos h]]
|
||||
rw [show (quadSolToSolInv S).2.2 = 0 by rw [quadSolToSolInv, if_pos h]]
|
||||
rw [special_on_AF]
|
||||
|
||||
lemma quadSolToSolInv_generic (S : (PlusU1 n).Sols) (h : α₁ S.1 ≠ 0) :
|
||||
(quadSolToSolInv S).2.1 • generic (quadSolToSolInv S).1 = S := by
|
||||
simp [quadSolToSolInv_1]
|
||||
rw [show (quadSolToSolInv S).2.1 = (α₁ S.1)⁻¹ by rw [quadSolToSolInv, if_neg h]]
|
||||
rw [generic_on_AF_α₁_ne_zero S h]
|
||||
|
||||
lemma quadSolToSolInv_rightInverse : Function.RightInverse (@quadSolToSolInv n) quadSolToSol := by
|
||||
intro S
|
||||
by_cases h : α₁ S.1 = 0
|
||||
rw [quadSolToSol, dif_pos (quadSolToSolInv_α₁_α₂_zero S h)]
|
||||
exact quadSolToSolInv_special S h
|
||||
rw [quadSolToSol, dif_neg (quadSolToSolInv_α₁_α₂_neq_zero S h)]
|
||||
exact quadSolToSolInv_generic S h
|
||||
|
||||
theorem quadSolToSol_surjective : Function.Surjective (@quadSolToSol n) :=
|
||||
Function.RightInverse.surjective quadSolToSolInv_rightInverse
|
||||
|
||||
end PlusU1
|
||||
end SMRHN
|
Loading…
Add table
Add a link
Reference in a new issue