refactor: Index notation
This commit is contained in:
parent
d9f6760541
commit
ec69deaff2
12 changed files with 299 additions and 865 deletions
|
@ -4,7 +4,15 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.OverColor.Basic
|
||||
import HepLean.Tensors.Tree.Dot
|
||||
import HepLean.SpaceTime.WeylFermion.Contraction
|
||||
import HepLean.SpaceTime.WeylFermion.Metric
|
||||
import HepLean.SpaceTime.WeylFermion.Unit
|
||||
import HepLean.SpaceTime.LorentzVector.Complex.Contraction
|
||||
import HepLean.SpaceTime.LorentzVector.Complex.Metric
|
||||
import HepLean.SpaceTime.LorentzVector.Complex.Unit
|
||||
import HepLean.Mathematics.PiTensorProduct
|
||||
import HepLean.SpaceTime.PauliMatrices.AsTensor
|
||||
/-!
|
||||
|
||||
## Complex Lorentz tensors
|
||||
|
@ -30,34 +38,71 @@ inductive Color
|
|||
| up : Color
|
||||
| down : Color
|
||||
|
||||
/-- The involution taking a colour to its dual. -/
|
||||
def τ : Color → Color
|
||||
| Color.upL => Color.downL
|
||||
| Color.downL => Color.upL
|
||||
| Color.upR => Color.downR
|
||||
| Color.downR => Color.upR
|
||||
| Color.up => Color.down
|
||||
| Color.down => Color.up
|
||||
|
||||
/-- The function taking a color to the dimension of the basis of vectors. -/
|
||||
def evalNo : Color → ℕ
|
||||
| Color.upL => 2
|
||||
| Color.downL => 2
|
||||
| Color.upR => 2
|
||||
| Color.downR => 2
|
||||
| Color.up => 4
|
||||
| Color.down => 4
|
||||
|
||||
noncomputable section
|
||||
/-- The corresponding representations associated with a color. -/
|
||||
def colorToRep (c : Color) : Rep ℂ SL(2, ℂ) :=
|
||||
match c with
|
||||
| Color.upL => Fermion.altLeftHanded
|
||||
| Color.downL => Fermion.leftHanded
|
||||
| Color.upR => Fermion.altRightHanded
|
||||
| Color.downR => Fermion.rightHanded
|
||||
| Color.up => Lorentz.complexContr
|
||||
| Color.down => Lorentz.complexCo
|
||||
|
||||
/-- The tensor structure for complex Lorentz tensors. -/
|
||||
def complexLorentzTensor : TensorStruct where
|
||||
C := Fermion.Color
|
||||
G := SL(2, ℂ)
|
||||
G_group := inferInstance
|
||||
k := ℂ
|
||||
k_commRing := inferInstance
|
||||
FDiscrete := Discrete.functor fun c =>
|
||||
match c with
|
||||
| Color.upL => Fermion.leftHanded
|
||||
| Color.downL => Fermion.altLeftHanded
|
||||
| Color.upR => Fermion.rightHanded
|
||||
| Color.downR => Fermion.altRightHanded
|
||||
| Color.up => Lorentz.complexContr
|
||||
| Color.down => Lorentz.complexCo
|
||||
τ := fun c =>
|
||||
match c with
|
||||
| Color.upL => Color.downL
|
||||
| Color.downL => Color.upL
|
||||
| Color.upR => Color.downR
|
||||
| Color.downR => Color.upR
|
||||
| Color.up => Color.down
|
||||
| Color.down => Color.up
|
||||
τ_involution c := by
|
||||
match c with
|
||||
| Color.upL => rfl
|
||||
| Color.downL => rfl
|
||||
| Color.upR => rfl
|
||||
| Color.downR => rfl
|
||||
| Color.up => rfl
|
||||
| Color.down => rfl
|
||||
contr := Discrete.natTrans fun c =>
|
||||
match c with
|
||||
| Discrete.mk Color.upL => Fermion.leftAltContraction
|
||||
| Discrete.mk Color.downL => Fermion.altLeftContraction
|
||||
| Discrete.mk Color.upR => Fermion.rightAltContraction
|
||||
| Discrete.mk Color.downR => Fermion.altRightContraction
|
||||
| Discrete.mk Color.up => Lorentz.contrCoContraction
|
||||
| Discrete.mk Color.down => Lorentz.coContrContraction
|
||||
metric := Discrete.natTrans fun c =>
|
||||
match c with
|
||||
| Discrete.mk Color.upL => Fermion.leftMetric
|
||||
| Discrete.mk Color.downL => Fermion.altLeftMetric
|
||||
| Discrete.mk Color.upR => Fermion.rightMetric
|
||||
| Discrete.mk Color.downR => Fermion.altRightMetric
|
||||
| Discrete.mk Color.up => Lorentz.contrMetric
|
||||
| Discrete.mk Color.down => Lorentz.coMetric
|
||||
unit := Discrete.natTrans fun c =>
|
||||
match c with
|
||||
| Discrete.mk Color.upL => Fermion.altLeftLeftUnit
|
||||
| Discrete.mk Color.downL => Fermion.leftAltLeftUnit
|
||||
| Discrete.mk Color.upR => Fermion.altRightRightUnit
|
||||
| Discrete.mk Color.downR => Fermion.rightAltRightUnit
|
||||
| Discrete.mk Color.up => Lorentz.coContrUnit
|
||||
| Discrete.mk Color.down => Lorentz.contrCoUnit
|
||||
evalNo := fun c =>
|
||||
match c with
|
||||
| Color.upL => 2
|
||||
| Color.downL => 2
|
||||
| Color.upR => 2
|
||||
| Color.downR => 2
|
||||
| Color.up => 4
|
||||
| Color.down => 4
|
||||
|
||||
end
|
||||
end Fermion
|
||||
|
|
|
@ -1,497 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.ComplexLorentz.Basic
|
||||
import HepLean.Tensors.OverColor.Basic
|
||||
import HepLean.Mathematics.PiTensorProduct
|
||||
/-!
|
||||
|
||||
## Monodial functor from color cat.
|
||||
|
||||
-/
|
||||
namespace Fermion
|
||||
|
||||
noncomputable section
|
||||
|
||||
open Matrix
|
||||
open MatrixGroups
|
||||
open Complex
|
||||
open TensorProduct
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
|
||||
/-- The linear equivalence between `colorToRep c1` and `colorToRep c2` when `c1 = c2`. -/
|
||||
def colorToRepCongr {c1 c2 : Color} (h : c1 = c2) : colorToRep c1 ≃ₗ[ℂ] colorToRep c2 where
|
||||
toFun := Equiv.cast (congrArg (CoeSort.coe ∘ colorToRep) h)
|
||||
invFun := (Equiv.cast (congrArg (CoeSort.coe ∘ colorToRep) h)).symm
|
||||
map_add' x y := by
|
||||
subst h
|
||||
rfl
|
||||
map_smul' x y := by
|
||||
subst h
|
||||
rfl
|
||||
left_inv x := Equiv.symm_apply_apply (Equiv.cast (congrArg (CoeSort.coe ∘ colorToRep) h)) x
|
||||
right_inv x := Equiv.apply_symm_apply (Equiv.cast (congrArg (CoeSort.coe ∘ colorToRep) h)) x
|
||||
|
||||
lemma colorToRepCongr_comm_ρ {c1 c2 : Color} (h : c1 = c2) (M : SL(2, ℂ)) (x : (colorToRep c1)) :
|
||||
(colorToRepCongr h) ((colorToRep c1).ρ M x) = (colorToRep c2).ρ M ((colorToRepCongr h) x) := by
|
||||
subst h
|
||||
rfl
|
||||
|
||||
namespace colorFun
|
||||
|
||||
/-- Given a object in `OverColor Color` the correpsonding tensor product of representations. -/
|
||||
def obj' (f : OverColor Color) : Rep ℂ SL(2, ℂ) := Rep.of {
|
||||
toFun := fun M => PiTensorProduct.map (fun x => (colorToRep (f.hom x)).ρ M),
|
||||
map_one' := by
|
||||
simp
|
||||
map_mul' := fun M N => by
|
||||
simp only [CategoryTheory.Functor.id_obj, _root_.map_mul]
|
||||
ext x : 2
|
||||
simp only [LinearMap.compMultilinearMap_apply, PiTensorProduct.map_tprod, LinearMap.mul_apply]}
|
||||
|
||||
lemma obj'_ρ (f : OverColor Color) (M : SL(2, ℂ)) : (obj' f).ρ M =
|
||||
PiTensorProduct.map (fun x => (colorToRep (f.hom x)).ρ M) := rfl
|
||||
|
||||
lemma obj'_ρ_tprod (f : OverColor Color) (M : SL(2, ℂ))
|
||||
(x : (i : f.left) → CoeSort.coe (colorToRep (f.hom i))) :
|
||||
(obj' f).ρ M ((PiTensorProduct.tprod ℂ) x) =
|
||||
PiTensorProduct.tprod ℂ (fun i => (colorToRep (f.hom i)).ρ M (x i)) := by
|
||||
rw [obj'_ρ]
|
||||
change (PiTensorProduct.map fun x => (colorToRep (f.hom x)).ρ M) ((PiTensorProduct.tprod ℂ) x) =
|
||||
(PiTensorProduct.tprod ℂ) fun i => ((colorToRep (f.hom i)).ρ M) (x i)
|
||||
rw [PiTensorProduct.map_tprod]
|
||||
|
||||
/-- Given a morphism in `OverColor Color` the corresopnding linear equivalence between `obj' _`
|
||||
induced by reindexing. -/
|
||||
def mapToLinearEquiv' {f g : OverColor Color} (m : f ⟶ g) : (obj' f).V ≃ₗ[ℂ] (obj' g).V :=
|
||||
(PiTensorProduct.reindex ℂ (fun x => colorToRep (f.hom x)) (OverColor.Hom.toEquiv m)).trans
|
||||
(PiTensorProduct.congr (fun i => colorToRepCongr (OverColor.Hom.toEquiv_symm_apply m i)))
|
||||
|
||||
lemma mapToLinearEquiv'_tprod {f g : OverColor Color} (m : f ⟶ g)
|
||||
(x : (i : f.left) → CoeSort.coe (colorToRep (f.hom i))) :
|
||||
mapToLinearEquiv' m (PiTensorProduct.tprod ℂ x) =
|
||||
PiTensorProduct.tprod ℂ (fun i => (colorToRepCongr (OverColor.Hom.toEquiv_symm_apply m i))
|
||||
(x ((OverColor.Hom.toEquiv m).symm i))) := by
|
||||
rw [mapToLinearEquiv']
|
||||
simp only [CategoryTheory.Functor.id_obj, LinearEquiv.trans_apply]
|
||||
change (PiTensorProduct.congr fun i => colorToRepCongr _)
|
||||
((PiTensorProduct.reindex ℂ (fun x => CoeSort.coe (colorToRep (f.hom x)))
|
||||
(OverColor.Hom.toEquiv m)) ((PiTensorProduct.tprod ℂ) x)) = _
|
||||
rw [PiTensorProduct.reindex_tprod, PiTensorProduct.congr_tprod]
|
||||
rfl
|
||||
|
||||
/-- Given a morphism in `OverColor Color` the corresopnding map of representations induced by
|
||||
reindexing. -/
|
||||
def map' {f g : OverColor Color} (m : f ⟶ g) : obj' f ⟶ obj' g where
|
||||
hom := (mapToLinearEquiv' m).toLinearMap
|
||||
comm M := by
|
||||
ext x : 2
|
||||
refine PiTensorProduct.induction_on' x ?_ (by
|
||||
intro x y hx hy
|
||||
simp only [CategoryTheory.Functor.id_obj, map_add, hx, ModuleCat.coe_comp,
|
||||
Function.comp_apply, hy])
|
||||
intro r x
|
||||
simp only [CategoryTheory.Functor.id_obj, PiTensorProduct.tprodCoeff_eq_smul_tprod,
|
||||
_root_.map_smul, ModuleCat.coe_comp, Function.comp_apply]
|
||||
apply congrArg
|
||||
change (mapToLinearEquiv' m) (((obj' f).ρ M) ((PiTensorProduct.tprod ℂ) x)) =
|
||||
((obj' g).ρ M) ((mapToLinearEquiv' m) ((PiTensorProduct.tprod ℂ) x))
|
||||
rw [mapToLinearEquiv'_tprod, obj'_ρ_tprod]
|
||||
erw [mapToLinearEquiv'_tprod, obj'_ρ_tprod]
|
||||
apply congrArg
|
||||
funext i
|
||||
rw [colorToRepCongr_comm_ρ]
|
||||
|
||||
end colorFun
|
||||
|
||||
/-- The functor between `OverColor Color` and `Rep ℂ SL(2, ℂ)` taking a map of colors
|
||||
to the corresponding tensor product representation. -/
|
||||
@[simps! obj_V_carrier]
|
||||
def colorFun : OverColor Color ⥤ Rep ℂ SL(2, ℂ) where
|
||||
obj := colorFun.obj'
|
||||
map := colorFun.map'
|
||||
map_id f := by
|
||||
ext x
|
||||
refine PiTensorProduct.induction_on' x (fun r x => ?_) (fun x y hx hy => by
|
||||
simp only [CategoryTheory.Functor.id_obj, map_add, hx, ModuleCat.coe_comp,
|
||||
Function.comp_apply, hy])
|
||||
simp only [CategoryTheory.Functor.id_obj, PiTensorProduct.tprodCoeff_eq_smul_tprod,
|
||||
_root_.map_smul, Action.id_hom, ModuleCat.id_apply]
|
||||
apply congrArg
|
||||
erw [colorFun.mapToLinearEquiv'_tprod]
|
||||
exact congrArg _ (funext (fun i => rfl))
|
||||
map_comp {X Y Z} f g := by
|
||||
ext x
|
||||
refine PiTensorProduct.induction_on' x (fun r x => ?_) (fun x y hx hy => by
|
||||
simp only [CategoryTheory.Functor.id_obj, map_add, hx, ModuleCat.coe_comp,
|
||||
Function.comp_apply, hy])
|
||||
simp only [Functor.id_obj, PiTensorProduct.tprodCoeff_eq_smul_tprod, _root_.map_smul,
|
||||
Action.comp_hom, ModuleCat.coe_comp, Function.comp_apply]
|
||||
apply congrArg
|
||||
rw [colorFun.map', colorFun.map', colorFun.map']
|
||||
change (colorFun.mapToLinearEquiv' (CategoryTheory.CategoryStruct.comp f g))
|
||||
((PiTensorProduct.tprod ℂ) x) =
|
||||
(colorFun.mapToLinearEquiv' g) ((colorFun.mapToLinearEquiv' f) ((PiTensorProduct.tprod ℂ) x))
|
||||
rw [colorFun.mapToLinearEquiv'_tprod, colorFun.mapToLinearEquiv'_tprod]
|
||||
erw [colorFun.mapToLinearEquiv'_tprod]
|
||||
refine congrArg _ (funext (fun i => ?_))
|
||||
simp only [colorToRepCongr, Function.comp_apply, Equiv.cast_symm, LinearEquiv.coe_mk,
|
||||
Equiv.cast_apply, cast_cast, cast_inj]
|
||||
rfl
|
||||
|
||||
namespace colorFun
|
||||
|
||||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
|
||||
lemma map_tprod {X Y : OverColor Color} (p : (i : X.left) → (colorToRep (X.hom i)))
|
||||
(f : X ⟶ Y) : (colorFun.map f).hom (PiTensorProduct.tprod ℂ p) =
|
||||
PiTensorProduct.tprod ℂ fun (i : Y.left) => colorToRepCongr
|
||||
(OverColor.Hom.toEquiv_comp_inv_apply f i) (p ((OverColor.Hom.toEquiv f).symm i)) := by
|
||||
change (colorFun.map' f).hom ((PiTensorProduct.tprod ℂ) p) = _
|
||||
simp only [map', mapToLinearEquiv', Functor.id_obj]
|
||||
erw [LinearEquiv.trans_apply]
|
||||
change (PiTensorProduct.congr fun i => colorToRepCongr _)
|
||||
((PiTensorProduct.reindex ℂ (fun x => _) (OverColor.Hom.toEquiv f))
|
||||
((PiTensorProduct.tprod ℂ) p)) = _
|
||||
rw [PiTensorProduct.reindex_tprod, PiTensorProduct.congr_tprod]
|
||||
|
||||
lemma obj_ρ_tprod (f : OverColor Color) (M : SL(2, ℂ))
|
||||
(x : (i : f.left) → CoeSort.coe (colorToRep (f.hom i))) :
|
||||
(colorFun.obj f).ρ M ((PiTensorProduct.tprod ℂ) x) =
|
||||
PiTensorProduct.tprod ℂ (fun i => (colorToRep (f.hom i)).ρ M (x i)) := by
|
||||
exact obj'_ρ_tprod _ _ _
|
||||
|
||||
@[simp]
|
||||
lemma obj_ρ_empty (g : SL(2, ℂ)) : (colorFun.obj (𝟙_ (OverColor Color))).ρ g = LinearMap.id := by
|
||||
erw [colorFun.obj'_ρ]
|
||||
ext x
|
||||
refine PiTensorProduct.induction_on' x (fun r x => ?_) <| fun x y hx hy => by
|
||||
simp only [CategoryTheory.Functor.id_obj, map_add, hx, ModuleCat.coe_comp,
|
||||
Function.comp_apply, hy]
|
||||
erw [hx, hy]
|
||||
rfl
|
||||
simp only [OverColor.instMonoidalCategoryStruct_tensorUnit_left, Functor.id_obj,
|
||||
OverColor.instMonoidalCategoryStruct_tensorUnit_hom, PiTensorProduct.tprodCoeff_eq_smul_tprod,
|
||||
_root_.map_smul, PiTensorProduct.map_tprod, LinearMap.id_coe, id_eq]
|
||||
apply congrArg
|
||||
apply congrArg
|
||||
funext i
|
||||
exact Empty.elim i
|
||||
|
||||
/-- The unit natural isomorphism. -/
|
||||
def ε : 𝟙_ (Rep ℂ SL(2, ℂ)) ≅ colorFun.obj (𝟙_ (OverColor Color)) where
|
||||
hom := {
|
||||
hom := (PiTensorProduct.isEmptyEquiv Empty).symm.toLinearMap
|
||||
comm := fun M => by
|
||||
refine LinearMap.ext (fun x => ?_)
|
||||
simp only [colorFun_obj_V_carrier, OverColor.instMonoidalCategoryStruct_tensorUnit_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorUnit_hom,
|
||||
Action.instMonoidalCategory_tensorUnit_V, Action.tensorUnit_ρ', Functor.id_obj,
|
||||
Category.id_comp, LinearEquiv.coe_coe]
|
||||
erw [obj_ρ_empty M]
|
||||
rfl}
|
||||
inv := {
|
||||
hom := (PiTensorProduct.isEmptyEquiv Empty).toLinearMap
|
||||
comm := fun M => by
|
||||
refine LinearMap.ext (fun x => ?_)
|
||||
simp only [Action.instMonoidalCategory_tensorUnit_V, colorFun_obj_V_carrier,
|
||||
OverColor.instMonoidalCategoryStruct_tensorUnit_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorUnit_hom, Functor.id_obj, Action.tensorUnit_ρ']
|
||||
erw [obj_ρ_empty M]
|
||||
rfl}
|
||||
hom_inv_id := by
|
||||
ext1
|
||||
simp only [Action.instMonoidalCategory_tensorUnit_V, CategoryStruct.comp,
|
||||
OverColor.instMonoidalCategoryStruct_tensorUnit_hom,
|
||||
OverColor.instMonoidalCategoryStruct_tensorUnit_left, Functor.id_obj, Action.Hom.comp_hom,
|
||||
colorFun_obj_V_carrier, LinearEquiv.comp_coe, LinearEquiv.symm_trans_self,
|
||||
LinearEquiv.refl_toLinearMap, Action.id_hom]
|
||||
rfl
|
||||
inv_hom_id := by
|
||||
ext1
|
||||
simp only [CategoryStruct.comp, OverColor.instMonoidalCategoryStruct_tensorUnit_hom,
|
||||
OverColor.instMonoidalCategoryStruct_tensorUnit_left, Functor.id_obj, Action.Hom.comp_hom,
|
||||
colorFun_obj_V_carrier, Action.instMonoidalCategory_tensorUnit_V, LinearEquiv.comp_coe,
|
||||
LinearEquiv.self_trans_symm, LinearEquiv.refl_toLinearMap, Action.id_hom]
|
||||
rfl
|
||||
|
||||
/-- An auxillary equivalence, and trivial, of modules needed to define `μModEquiv`. -/
|
||||
def colorToRepSumEquiv {X Y : OverColor Color} (i : X.left ⊕ Y.left) :
|
||||
Sum.elim (fun i => colorToRep (X.hom i)) (fun i => colorToRep (Y.hom i)) i ≃ₗ[ℂ]
|
||||
colorToRep (Sum.elim X.hom Y.hom i) :=
|
||||
match i with
|
||||
| Sum.inl _ => LinearEquiv.refl _ _
|
||||
| Sum.inr _ => LinearEquiv.refl _ _
|
||||
|
||||
/-- The equivalence of modules corresonding to the tensorate. -/
|
||||
def μModEquiv (X Y : OverColor Color) :
|
||||
(colorFun.obj X ⊗ colorFun.obj Y).V ≃ₗ[ℂ] colorFun.obj (X ⊗ Y) :=
|
||||
HepLean.PiTensorProduct.tmulEquiv ≪≫ₗ PiTensorProduct.congr colorToRepSumEquiv
|
||||
|
||||
lemma μModEquiv_tmul_tprod {X Y : OverColor Color}(p : (i : X.left) → (colorToRep (X.hom i)))
|
||||
(q : (i : Y.left) → (colorToRep (Y.hom i))) :
|
||||
(μModEquiv X Y) ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q) =
|
||||
(PiTensorProduct.tprod ℂ) fun i =>
|
||||
(colorToRepSumEquiv i) (HepLean.PiTensorProduct.elimPureTensor p q i) := by
|
||||
rw [μModEquiv]
|
||||
simp only [colorFun_obj_V_carrier, OverColor.instMonoidalCategoryStruct_tensorObj_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorObj_hom, Action.instMonoidalCategory_tensorObj_V,
|
||||
Functor.id_obj, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj]
|
||||
rw [LinearEquiv.trans_apply]
|
||||
erw [HepLean.PiTensorProduct.tmulEquiv_tmul_tprod]
|
||||
change (PiTensorProduct.congr colorToRepSumEquiv) ((PiTensorProduct.tprod ℂ)
|
||||
(HepLean.PiTensorProduct.elimPureTensor p q)) = _
|
||||
rw [PiTensorProduct.congr_tprod]
|
||||
rfl
|
||||
|
||||
/-- The natural isomorphism corresponding to the tensorate. -/
|
||||
def μ (X Y : OverColor Color) : colorFun.obj X ⊗ colorFun.obj Y ≅ colorFun.obj (X ⊗ Y) where
|
||||
hom := {
|
||||
hom := (μModEquiv X Y).toLinearMap
|
||||
comm := fun M => by
|
||||
refine HepLean.PiTensorProduct.induction_tmul (fun p q => ?_)
|
||||
simp only [colorFun_obj_V_carrier, OverColor.instMonoidalCategoryStruct_tensorObj_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorObj_hom, Functor.id_obj, CategoryStruct.comp,
|
||||
Action.instMonoidalCategory_tensorObj_V, Action.tensor_ρ', LinearMap.coe_comp,
|
||||
Function.comp_apply]
|
||||
change (μModEquiv X Y) (((((colorFun.obj X).ρ M) (PiTensorProduct.tprod ℂ p)) ⊗ₜ[ℂ]
|
||||
(((colorFun.obj Y).ρ M) (PiTensorProduct.tprod ℂ q)))) = ((colorFun.obj (X ⊗ Y)).ρ M)
|
||||
((μModEquiv X Y) ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q))
|
||||
rw [μModEquiv_tmul_tprod]
|
||||
erw [obj'_ρ_tprod, obj'_ρ_tprod, obj'_ρ_tprod]
|
||||
rw [μModEquiv_tmul_tprod]
|
||||
apply congrArg
|
||||
funext i
|
||||
match i with
|
||||
| Sum.inl i =>
|
||||
rfl
|
||||
| Sum.inr i =>
|
||||
rfl
|
||||
}
|
||||
inv := {
|
||||
hom := (μModEquiv X Y).symm.toLinearMap
|
||||
comm := fun M => by
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, CategoryStruct.comp,
|
||||
colorFun_obj_V_carrier, OverColor.instMonoidalCategoryStruct_tensorObj_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorObj_hom, Action.tensor_ρ']
|
||||
erw [LinearEquiv.eq_comp_toLinearMap_symm,LinearMap.comp_assoc,
|
||||
LinearEquiv.toLinearMap_symm_comp_eq]
|
||||
refine HepLean.PiTensorProduct.induction_tmul (fun p q => ?_)
|
||||
simp only [colorFun_obj_V_carrier, OverColor.instMonoidalCategoryStruct_tensorObj_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorObj_hom, Functor.id_obj, CategoryStruct.comp,
|
||||
Action.instMonoidalCategory_tensorObj_V, Action.tensor_ρ', LinearMap.coe_comp,
|
||||
Function.comp_apply]
|
||||
symm
|
||||
change (μModEquiv X Y) (((((colorFun.obj X).ρ M) (PiTensorProduct.tprod ℂ p)) ⊗ₜ[ℂ]
|
||||
(((colorFun.obj Y).ρ M) (PiTensorProduct.tprod ℂ q)))) = ((colorFun.obj (X ⊗ Y)).ρ M)
|
||||
((μModEquiv X Y) ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q))
|
||||
rw [μModEquiv_tmul_tprod]
|
||||
erw [obj'_ρ_tprod, obj'_ρ_tprod, obj'_ρ_tprod]
|
||||
rw [μModEquiv_tmul_tprod]
|
||||
apply congrArg
|
||||
funext i
|
||||
match i with
|
||||
| Sum.inl i =>
|
||||
rfl
|
||||
| Sum.inr i =>
|
||||
rfl}
|
||||
hom_inv_id := by
|
||||
ext1
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, CategoryStruct.comp, Action.Hom.comp_hom,
|
||||
colorFun_obj_V_carrier, OverColor.instMonoidalCategoryStruct_tensorObj_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorObj_hom, LinearEquiv.comp_coe,
|
||||
LinearEquiv.self_trans_symm, LinearEquiv.refl_toLinearMap, Action.id_hom]
|
||||
rfl
|
||||
inv_hom_id := by
|
||||
ext1
|
||||
simp only [CategoryStruct.comp, Action.instMonoidalCategory_tensorObj_V, Action.Hom.comp_hom,
|
||||
colorFun_obj_V_carrier, OverColor.instMonoidalCategoryStruct_tensorObj_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorObj_hom, LinearEquiv.comp_coe,
|
||||
LinearEquiv.symm_trans_self, LinearEquiv.refl_toLinearMap, Action.id_hom]
|
||||
rfl
|
||||
|
||||
lemma μ_tmul_tprod {X Y : OverColor Color} (p : (i : X.left) → (colorToRep (X.hom i)))
|
||||
(q : (i : Y.left) → (colorToRep (Y.hom i))) :
|
||||
(μ X Y).hom.hom ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q) =
|
||||
(PiTensorProduct.tprod ℂ) fun i =>
|
||||
(colorToRepSumEquiv i) (HepLean.PiTensorProduct.elimPureTensor p q i) := by
|
||||
exact μModEquiv_tmul_tprod p q
|
||||
|
||||
lemma μ_natural_left {X Y : OverColor Color} (f : X ⟶ Y) (Z : OverColor Color) :
|
||||
MonoidalCategory.whiskerRight (colorFun.map f) (colorFun.obj Z) ≫ (μ Y Z).hom =
|
||||
(μ X Z).hom ≫ colorFun.map (MonoidalCategory.whiskerRight f Z) := by
|
||||
ext1
|
||||
refine HepLean.PiTensorProduct.induction_tmul (fun p q => ?_)
|
||||
simp only [colorFun_obj_V_carrier, OverColor.instMonoidalCategoryStruct_tensorObj_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorObj_hom, Functor.id_obj, CategoryStruct.comp,
|
||||
Action.Hom.comp_hom, Action.instMonoidalCategory_tensorObj_V,
|
||||
Action.instMonoidalCategory_whiskerRight_hom, LinearMap.coe_comp, Function.comp_apply]
|
||||
change _ = (colorFun.map (MonoidalCategory.whiskerRight f Z)).hom
|
||||
((μ X Z).hom.hom ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q))
|
||||
rw [μ_tmul_tprod]
|
||||
change _ = (colorFun.map (f ▷ Z)).hom
|
||||
((PiTensorProduct.tprod ℂ) fun i => (colorToRepSumEquiv i)
|
||||
(HepLean.PiTensorProduct.elimPureTensor p q i))
|
||||
rw [colorFun.map_tprod]
|
||||
have h1 : (((colorFun.map f).hom ▷ (colorFun.obj Z).V) ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ]
|
||||
(PiTensorProduct.tprod ℂ) q)) = ((colorFun.map f).hom
|
||||
((PiTensorProduct.tprod ℂ) p) ⊗ₜ[ℂ] ((PiTensorProduct.tprod ℂ) q)) := by rfl
|
||||
erw [h1]
|
||||
rw [colorFun.map_tprod]
|
||||
change (μ Y Z).hom.hom (((PiTensorProduct.tprod ℂ) fun i => (colorToRepCongr _)
|
||||
(p ((OverColor.Hom.toEquiv f).symm i))) ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q) = _
|
||||
rw [μ_tmul_tprod]
|
||||
apply congrArg
|
||||
funext i
|
||||
match i with
|
||||
| Sum.inl i => rfl
|
||||
| Sum.inr i => rfl
|
||||
|
||||
lemma μ_natural_right {X Y : OverColor Color} (X' : OverColor Color) (f : X ⟶ Y) :
|
||||
MonoidalCategory.whiskerLeft (colorFun.obj X') (colorFun.map f) ≫ (μ X' Y).hom =
|
||||
(μ X' X).hom ≫ colorFun.map (MonoidalCategory.whiskerLeft X' f) := by
|
||||
ext1
|
||||
refine HepLean.PiTensorProduct.induction_tmul (fun p q => ?_)
|
||||
simp only [colorFun_obj_V_carrier, OverColor.instMonoidalCategoryStruct_tensorObj_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorObj_hom, Functor.id_obj, CategoryStruct.comp,
|
||||
Action.Hom.comp_hom, Action.instMonoidalCategory_tensorObj_V,
|
||||
Action.instMonoidalCategory_whiskerLeft_hom, LinearMap.coe_comp, Function.comp_apply]
|
||||
change _ = (colorFun.map (X' ◁ f)).hom ((μ X' X).hom.hom
|
||||
((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q))
|
||||
rw [μ_tmul_tprod]
|
||||
change _ = (colorFun.map (X' ◁ f)).hom ((PiTensorProduct.tprod ℂ) fun i =>
|
||||
(colorToRepSumEquiv i) (HepLean.PiTensorProduct.elimPureTensor p q i))
|
||||
rw [map_tprod]
|
||||
have h1 : (((colorFun.obj X').V ◁ (colorFun.map f).hom)
|
||||
((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q))
|
||||
= ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (colorFun.map f).hom ((PiTensorProduct.tprod ℂ) q)) := by
|
||||
rfl
|
||||
erw [h1]
|
||||
rw [map_tprod]
|
||||
change (μ X' Y).hom.hom ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) fun i =>
|
||||
(colorToRepCongr _) (q ((OverColor.Hom.toEquiv f).symm i))) = _
|
||||
rw [μ_tmul_tprod]
|
||||
apply congrArg
|
||||
funext i
|
||||
match i with
|
||||
| Sum.inl i => rfl
|
||||
| Sum.inr i => rfl
|
||||
|
||||
lemma associativity (X Y Z : OverColor Color) :
|
||||
whiskerRight (μ X Y).hom (colorFun.obj Z) ≫
|
||||
(μ (X ⊗ Y) Z).hom ≫ colorFun.map (associator X Y Z).hom =
|
||||
(associator (colorFun.obj X) (colorFun.obj Y) (colorFun.obj Z)).hom ≫
|
||||
whiskerLeft (colorFun.obj X) (μ Y Z).hom ≫ (μ X (Y ⊗ Z)).hom := by
|
||||
ext1
|
||||
refine HepLean.PiTensorProduct.induction_assoc' (fun p q m => ?_)
|
||||
simp only [colorFun_obj_V_carrier, OverColor.instMonoidalCategoryStruct_tensorObj_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorObj_hom, Functor.id_obj, CategoryStruct.comp,
|
||||
Action.Hom.comp_hom, Action.instMonoidalCategory_tensorObj_V,
|
||||
Action.instMonoidalCategory_whiskerRight_hom, LinearMap.coe_comp, Function.comp_apply,
|
||||
Action.instMonoidalCategory_whiskerLeft_hom, Action.instMonoidalCategory_associator_hom_hom]
|
||||
change (colorFun.map (α_ X Y Z).hom).hom ((μ (X ⊗ Y) Z).hom.hom
|
||||
((((μ X Y).hom.hom ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ]
|
||||
(PiTensorProduct.tprod ℂ) q)) ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) m))) =
|
||||
(μ X (Y ⊗ Z)).hom.hom ((((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] ((μ Y Z).hom.hom
|
||||
((PiTensorProduct.tprod ℂ) q ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) m)))))
|
||||
rw [μ_tmul_tprod, μ_tmul_tprod]
|
||||
change (colorFun.map (α_ X Y Z).hom).hom ((μ (X ⊗ Y) Z).hom.hom
|
||||
(((PiTensorProduct.tprod ℂ) fun i => (colorToRepSumEquiv i)
|
||||
(HepLean.PiTensorProduct.elimPureTensor p q i)) ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) m)) =
|
||||
(μ X (Y ⊗ Z)).hom.hom ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) fun i =>
|
||||
(colorToRepSumEquiv i) (HepLean.PiTensorProduct.elimPureTensor q m i))
|
||||
rw [μ_tmul_tprod, μ_tmul_tprod]
|
||||
erw [map_tprod]
|
||||
apply congrArg
|
||||
funext i
|
||||
match i with
|
||||
| Sum.inl i => rfl
|
||||
| Sum.inr (Sum.inl i) => rfl
|
||||
| Sum.inr (Sum.inr i) => rfl
|
||||
|
||||
lemma left_unitality (X : OverColor Color) : (leftUnitor (colorFun.obj X)).hom =
|
||||
whiskerRight colorFun.ε.hom (colorFun.obj X) ≫
|
||||
(μ (𝟙_ (OverColor Color)) X).hom ≫ colorFun.map (leftUnitor X).hom := by
|
||||
ext1
|
||||
apply HepLean.PiTensorProduct.induction_mod_tmul (fun x q => ?_)
|
||||
simp only [colorFun_obj_V_carrier, Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
Action.instMonoidalCategory_tensorUnit_V, Functor.id_obj,
|
||||
Action.instMonoidalCategory_leftUnitor_hom_hom, CategoryStruct.comp, Action.Hom.comp_hom,
|
||||
Action.instMonoidalCategory_tensorObj_V, OverColor.instMonoidalCategoryStruct_tensorObj_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorUnit_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorObj_hom,
|
||||
Action.instMonoidalCategory_whiskerRight_hom, LinearMap.coe_comp, Function.comp_apply]
|
||||
change TensorProduct.lid ℂ (colorFun.obj X) (x ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q) =
|
||||
(colorFun.map (λ_ X).hom).hom ((μ (𝟙_ (OverColor Color)) X).hom.hom
|
||||
((((PiTensorProduct.isEmptyEquiv Empty).symm x) ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q)))
|
||||
simp only [Functor.id_obj, lid_tmul, colorFun_obj_V_carrier,
|
||||
OverColor.instMonoidalCategoryStruct_tensorObj_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorUnit_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorObj_hom, Action.instMonoidalCategory_tensorObj_V,
|
||||
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
OverColor.instMonoidalCategoryStruct_tensorUnit_hom, PiTensorProduct.isEmptyEquiv,
|
||||
LinearEquiv.coe_symm_mk]
|
||||
rw [TensorProduct.smul_tmul, TensorProduct.tmul_smul]
|
||||
erw [LinearMap.map_smul, LinearMap.map_smul]
|
||||
apply congrArg
|
||||
change _ = (colorFun.map (λ_ X).hom).hom ((μ (𝟙_ (OverColor Color)) X).hom.hom
|
||||
((PiTensorProduct.tprod ℂ) _ ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) q))
|
||||
rw [μ_tmul_tprod]
|
||||
erw [map_tprod]
|
||||
rfl
|
||||
|
||||
lemma right_unitality (X : OverColor Color) : (MonoidalCategory.rightUnitor (colorFun.obj X)).hom =
|
||||
whiskerLeft (colorFun.obj X) ε.hom ≫
|
||||
(μ X (𝟙_ (OverColor Color))).hom ≫ colorFun.map (MonoidalCategory.rightUnitor X).hom := by
|
||||
ext1
|
||||
apply HepLean.PiTensorProduct.induction_tmul_mod (fun p x => ?_)
|
||||
simp only [colorFun_obj_V_carrier, Functor.id_obj, Equivalence.symm_inverse,
|
||||
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
Action.instMonoidalCategory_tensorUnit_V, Action.instMonoidalCategory_rightUnitor_hom_hom,
|
||||
CategoryStruct.comp, Action.Hom.comp_hom, Action.instMonoidalCategory_tensorObj_V,
|
||||
OverColor.instMonoidalCategoryStruct_tensorObj_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorUnit_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorObj_hom, Action.instMonoidalCategory_whiskerLeft_hom,
|
||||
LinearMap.coe_comp, Function.comp_apply]
|
||||
change TensorProduct.rid ℂ (colorFun.obj X) ((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] x) =
|
||||
(colorFun.map (ρ_ X).hom).hom ((μ X (𝟙_ (OverColor Color))).hom.hom
|
||||
((((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] ((PiTensorProduct.isEmptyEquiv Empty).symm x)))))
|
||||
simp only [Functor.id_obj, rid_tmul, colorFun_obj_V_carrier,
|
||||
OverColor.instMonoidalCategoryStruct_tensorObj_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorUnit_left,
|
||||
OverColor.instMonoidalCategoryStruct_tensorObj_hom, Action.instMonoidalCategory_tensorObj_V,
|
||||
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj,
|
||||
OverColor.instMonoidalCategoryStruct_tensorUnit_hom, PiTensorProduct.isEmptyEquiv,
|
||||
LinearEquiv.coe_symm_mk, tmul_smul]
|
||||
erw [LinearMap.map_smul, LinearMap.map_smul]
|
||||
apply congrArg
|
||||
change _ = (colorFun.map (ρ_ X).hom).hom ((μ X (𝟙_ (OverColor Color))).hom.hom
|
||||
((PiTensorProduct.tprod ℂ) p ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) _))
|
||||
rw [μ_tmul_tprod]
|
||||
erw [map_tprod]
|
||||
rfl
|
||||
|
||||
end colorFun
|
||||
|
||||
/-- The monoidal functor between `OverColor Color` and `Rep ℂ SL(2, ℂ)` taking a map of colors
|
||||
to the corresponding tensor product representation. -/
|
||||
def colorFunMon : MonoidalFunctor (OverColor Color) (Rep ℂ SL(2, ℂ)) where
|
||||
toFunctor := colorFun
|
||||
ε := colorFun.ε.hom
|
||||
μ X Y := (colorFun.μ X Y).hom
|
||||
μ_natural_left := colorFun.μ_natural_left
|
||||
μ_natural_right := colorFun.μ_natural_right
|
||||
associativity := colorFun.associativity
|
||||
left_unitality := colorFun.left_unitality
|
||||
right_unitality := colorFun.right_unitality
|
||||
|
||||
end
|
||||
end Fermion
|
|
@ -1,107 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.OverColor.Basic
|
||||
import HepLean.Tensors.ComplexLorentz.ColorFun
|
||||
import HepLean.Mathematics.PiTensorProduct
|
||||
/-!
|
||||
|
||||
## The contraction monoidal natural transformation
|
||||
|
||||
-/
|
||||
|
||||
namespace Fermion
|
||||
|
||||
noncomputable section
|
||||
|
||||
open Matrix
|
||||
open MatrixGroups
|
||||
open Complex
|
||||
open TensorProduct
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
|
||||
namespace pairwiseRepFun
|
||||
|
||||
/-- Given an object `c : OverColor Color` the representation defined by
|
||||
`⨂[R] x, colorToRep (c.hom x) ⊗[R] colorToRep (τ (c.hom x))`. -/
|
||||
def obj' (c : OverColor Color) : Rep ℂ SL(2, ℂ) := Rep.of {
|
||||
toFun := fun M => PiTensorProduct.map (fun x =>
|
||||
TensorProduct.map ((colorToRep (c.hom x)).ρ M) ((colorToRep (τ (c.hom x))).ρ M)),
|
||||
map_one' := by
|
||||
simp
|
||||
map_mul' := fun x y => by
|
||||
simp only [Functor.id_obj, _root_.map_mul]
|
||||
ext x' : 2
|
||||
simp only [LinearMap.compMultilinearMap_apply, PiTensorProduct.map_tprod, LinearMap.mul_apply]
|
||||
apply congrArg
|
||||
funext i
|
||||
change _ = (TensorProduct.map _ _ ∘ₗ TensorProduct.map _ _) (x' i)
|
||||
rw [← TensorProduct.map_comp]
|
||||
rfl}
|
||||
|
||||
/-- Given a morphism in `OverColor Color` the corresopnding linear equivalence between `obj' _`
|
||||
induced by reindexing. -/
|
||||
def mapToLinearEquiv' {f g : OverColor Color} (m : f ⟶ g) : (obj' f).V ≃ₗ[ℂ] (obj' g).V :=
|
||||
(PiTensorProduct.reindex ℂ (fun x => (colorToRep (f.hom x)).V ⊗[ℂ] (colorToRep (τ (f.hom x))).V)
|
||||
(OverColor.Hom.toEquiv m)).trans
|
||||
(PiTensorProduct.congr (fun i =>
|
||||
TensorProduct.congr (colorToRepCongr (OverColor.Hom.toEquiv_symm_apply m i))
|
||||
((colorToRepCongr (congrArg τ (OverColor.Hom.toEquiv_symm_apply m i))))))
|
||||
|
||||
lemma mapToLinearEquiv'_tprod {f g : OverColor Color} (m : f ⟶ g)
|
||||
(x : (i : f.left) → (colorToRep (f.hom i)).V ⊗[ℂ] (colorToRep (τ (f.hom i))).V) :
|
||||
mapToLinearEquiv' m (PiTensorProduct.tprod ℂ x) =
|
||||
PiTensorProduct.tprod ℂ fun i =>
|
||||
(TensorProduct.congr (colorToRepCongr (OverColor.Hom.toEquiv_symm_apply m i))
|
||||
(colorToRepCongr (mapToLinearEquiv'.proof_4 m i))) (x ((OverColor.Hom.toEquiv m).symm i)) := by
|
||||
simp only [mapToLinearEquiv', Functor.id_obj, LinearEquiv.trans_apply]
|
||||
change (PiTensorProduct.congr fun i => TensorProduct.congr (colorToRepCongr _)
|
||||
(colorToRepCongr _)) ((PiTensorProduct.reindex ℂ
|
||||
(fun x => ↑(colorToRep (f.hom x)).V ⊗[ℂ] ↑(colorToRep (τ (f.hom x))).V)
|
||||
(OverColor.Hom.toEquiv m)) ((PiTensorProduct.tprod ℂ) x)) = _
|
||||
rw [PiTensorProduct.reindex_tprod]
|
||||
erw [PiTensorProduct.congr_tprod]
|
||||
rfl
|
||||
|
||||
end pairwiseRepFun
|
||||
|
||||
/-
|
||||
|
||||
def contrPairPairwiseRep (c : OverColor Color) :
|
||||
(colorFunMon.obj c) ⊗ colorFunMon.obj ((OverColor.map τ).obj c) ⟶
|
||||
pairwiseRep c where
|
||||
hom := TensorProduct.lift (PiTensorProduct.map₂ (fun x =>
|
||||
TensorProduct.mk ℂ (colorToRep (c.hom x)).V (colorToRep (τ (c.hom x))).V))
|
||||
comm M := by
|
||||
refine HepLean.PiTensorProduct.induction_tmul (fun x y => ?_)
|
||||
simp only [Functor.id_obj, CategoryStruct.comp, Action.instMonoidalCategory_tensorObj_V,
|
||||
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj, Action.tensor_ρ', LinearMap.coe_comp,
|
||||
Function.comp_apply]
|
||||
change (TensorProduct.lift
|
||||
(PiTensorProduct.map₂ fun x => TensorProduct.mk ℂ ↑(colorToRep (c.hom x)).V
|
||||
↑(colorToRep (τ (c.hom x))).V))
|
||||
((TensorProduct.map _ _)
|
||||
((PiTensorProduct.tprod ℂ) x ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) y)) = _
|
||||
rw [TensorProduct.map_tmul]
|
||||
erw [colorFun.obj_ρ_tprod, colorFun.obj_ρ_tprod]
|
||||
simp only [Functor.id_obj, lift.tmul]
|
||||
erw [PiTensorProduct.map₂_tprod_tprod]
|
||||
change _ = ((pairwiseRep c).ρ M)
|
||||
((TensorProduct.lift
|
||||
(PiTensorProduct.map₂ fun x => TensorProduct.mk ℂ ↑(colorToRep (c.hom x)).V
|
||||
↑(colorToRep (τ (c.hom x))).V))
|
||||
((PiTensorProduct.tprod ℂ) x ⊗ₜ[ℂ] (PiTensorProduct.tprod ℂ) y))
|
||||
simp only [mk_apply, Functor.id_obj, lift.tmul]
|
||||
rw [PiTensorProduct.map₂_tprod_tprod]
|
||||
simp only [pairwiseRep, Functor.id_obj, Rep.coe_of, Rep.of_ρ, MonoidHom.coe_mk, OneHom.coe_mk,
|
||||
mk_apply]
|
||||
erw [PiTensorProduct.map_tprod]
|
||||
rfl
|
||||
-/
|
||||
end
|
||||
end Fermion
|
|
@ -3,8 +3,8 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.Tree.Basic
|
||||
import HepLean.Tensors.ComplexLorentz.TensorStruct
|
||||
import HepLean.Tensors.Tree.Elab
|
||||
import HepLean.Tensors.ComplexLorentz.Basic
|
||||
/-!
|
||||
|
||||
## The tensor structure for complex Lorentz tensors
|
||||
|
@ -22,21 +22,36 @@ open CategoryTheory
|
|||
|
||||
noncomputable section
|
||||
|
||||
namespace complexLorentzTensor
|
||||
namespace Fermion
|
||||
|
||||
/-- The color map for a 2d tensor with the first index up and the second index down. -/
|
||||
def upDown : Fin 2 → complexLorentzTensor.C
|
||||
| 0 => Fermion.Color.up
|
||||
| 1 => Fermion.Color.down
|
||||
/-!
|
||||
|
||||
variable (T S : complexLorentzTensor.F.obj (OverColor.mk upDown))
|
||||
## Example tensor trees
|
||||
|
||||
/-
|
||||
import HepLean.Tensors.Tree.Elab
|
||||
|
||||
#check {T | i m ⊗ S | m l}ᵀ.dot
|
||||
#check {T | i m ⊗ S | l τ(m)}ᵀ.dot
|
||||
-/
|
||||
end complexLorentzTensor
|
||||
open MatrixGroups
|
||||
open Matrix
|
||||
example (v : Fermion.leftHanded) : TensorTree complexLorentzTensor ![Color.upL] :=
|
||||
{v | i}ᵀ
|
||||
|
||||
example (v : Fermion.leftHanded ⊗ Lorentz.complexContr) :
|
||||
TensorTree complexLorentzTensor ![Color.upL, Color.up] :=
|
||||
{v | i j}ᵀ
|
||||
|
||||
example :
|
||||
TensorTree complexLorentzTensor ![Color.downR, Color.downR] :=
|
||||
{Fermion.altRightMetric | μ j}ᵀ
|
||||
|
||||
lemma fin_three_expand {R : Type} (f : Fin 3 → R) : f = ![f 0, f 1, f 2]:= by
|
||||
funext x
|
||||
fin_cases x <;> rfl
|
||||
/-
|
||||
example : True :=
|
||||
let f :=
|
||||
{Lorentz.coMetric |
|
||||
μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗ PauliMatrix.asConsTensor | ν α' β'}ᵀ
|
||||
sorry
|
||||
-/
|
||||
end Fermion
|
||||
|
||||
end
|
||||
|
|
|
@ -1,36 +0,0 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Tensors.Tree.Basic
|
||||
import HepLean.Tensors.ComplexLorentz.ColorFun
|
||||
/-!
|
||||
|
||||
## The tensor structure for complex Lorentz tensors
|
||||
|
||||
-/
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
open MonoidalCategory
|
||||
open Matrix
|
||||
open MatrixGroups
|
||||
open Complex
|
||||
open TensorProduct
|
||||
open IndexNotation
|
||||
open CategoryTheory
|
||||
|
||||
noncomputable section
|
||||
|
||||
/-- The tensor structure for complex Lorentz tensors. -/
|
||||
def complexLorentzTensor : TensorStruct where
|
||||
C := Fermion.Color
|
||||
G := SL(2, ℂ)
|
||||
G_group := inferInstance
|
||||
k := ℂ
|
||||
k_commRing := inferInstance
|
||||
F := Fermion.colorFunMon
|
||||
τ := Fermion.τ
|
||||
evalNo := Fermion.evalNo
|
||||
|
||||
end
|
Loading…
Add table
Add a link
Reference in a new issue