refactor: Lint
This commit is contained in:
parent
91a171b3ff
commit
ecb2c7778c
3 changed files with 16 additions and 10 deletions
|
@ -90,8 +90,8 @@ lemma coMetric_symm : {Lorentz.coMetric | μ ν = Lorentz.coMetric | ν μ}ᵀ :
|
|||
rw [coMetric_expand]
|
||||
simp only [TensorSpecies.F, Nat.succ_eq_add_one, Nat.reduceAdd, Functor.id_obj, Fin.isValue,
|
||||
map_sub]
|
||||
simp only [coCoBasis, Nat.reduceAdd, Nat.succ_eq_add_one, OverColor.mk_hom, Functor.id_obj, Fin.isValue,
|
||||
Lorentz.complexCoBasisFin4, Basis.coe_reindex, Function.comp_apply]
|
||||
simp only [coCoBasis, Nat.succ_eq_add_one, Nat.reduceAdd, Functor.id_obj, OverColor.mk_hom,
|
||||
Lorentz.complexCoBasisFin4, Fin.isValue, Basis.coe_reindex, Function.comp_apply]
|
||||
congr 1
|
||||
congr 1
|
||||
congr 1
|
||||
|
@ -127,8 +127,7 @@ lemma contr_rank_2_symm {T1 : (Lorentz.complexContr ⊗ Lorentz.complexContr).V}
|
|||
rw [perm_perm]
|
||||
rw [perm_eq_id]
|
||||
· rfl
|
||||
· apply OverColor.Hom.ext
|
||||
rfl
|
||||
· rfl
|
||||
· apply OverColor.Hom.ext
|
||||
ext x
|
||||
exact Fin.elim0 x
|
||||
|
|
|
@ -246,12 +246,15 @@ def contrMap {n : ℕ} (c : Fin n.succ.succ → S.C)
|
|||
/-- Casts an element of the monoidal unit of `Rep S.k S.G` to the field `S.k`. -/
|
||||
def castToField (v : (↑((𝟙_ (Discrete S.C ⥤ Rep S.k S.G)).obj { as := c }).V)) : S.k := v
|
||||
|
||||
/-- Casts an element of `(S.F.obj (OverColor.mk c)).V` for `c` a map from `Fin 0` to an
|
||||
element of the field. -/
|
||||
def castFin0ToField {c : Fin 0 → S.C} : (S.F.obj (OverColor.mk c)).V →ₗ[S.k] S.k :=
|
||||
(PiTensorProduct.isEmptyEquiv (Fin 0)).toLinearMap
|
||||
|
||||
lemma castFin0ToField_tprod {c : Fin 0 → S.C} (x : (i : Fin 0) → S.FDiscrete.obj (Discrete.mk (c i))) :
|
||||
lemma castFin0ToField_tprod {c : Fin 0 → S.C}
|
||||
(x : (i : Fin 0) → S.FDiscrete.obj (Discrete.mk (c i))) :
|
||||
castFin0ToField S (PiTensorProduct.tprod S.k x) = 1 := by
|
||||
simp [castFin0ToField]
|
||||
simp only [castFin0ToField, mk_hom, Functor.id_obj, LinearEquiv.coe_coe]
|
||||
erw [PiTensorProduct.isEmptyEquiv_apply_tprod]
|
||||
|
||||
lemma contrMap_tprod {n : ℕ} (c : Fin n.succ.succ → S.C)
|
||||
|
@ -383,7 +386,7 @@ def evalIso {n : ℕ} (c : Fin n.succ → S.C)
|
|||
(S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractOne i).symm))).trans <|
|
||||
(S.F.μIso _ _).symm.trans <|
|
||||
tensorIso
|
||||
((S.F.mapIso (OverColor.mkIso (by ext x; fin_cases x; simp))).trans
|
||||
((S.F.mapIso (OverColor.mkIso (by ext x; fin_cases x; rfl))).trans
|
||||
(OverColor.forgetLiftApp S.FDiscrete (c i))) (S.F.mapIso (OverColor.mkIso (by ext x; simp)))
|
||||
|
||||
lemma evalIso_tprod {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ)
|
||||
|
@ -443,7 +446,9 @@ lemma evalIso_tprod {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ)
|
|||
rfl
|
||||
· apply congrArg
|
||||
funext k
|
||||
simp [lift.discreteFunctorMapEqIso]
|
||||
simp only [lift.discreteFunctorMapEqIso, Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv,
|
||||
eqToIso.inv, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv,
|
||||
LinearEquiv.ofLinear_apply]
|
||||
change (S.FDiscrete.map (eqToHom _)).hom
|
||||
(x ((HepLean.Fin.finExtractOne i).symm ((Sum.inr k)))) = _
|
||||
have h1' {a b : Fin n.succ} (h : a = b) :
|
||||
|
@ -603,6 +608,7 @@ def tensor : ∀ {n : ℕ} {c : Fin n → S.C}, TensorTree S c → S.F.obj (Over
|
|||
| contr i j h t => (S.contrMap _ i j h).hom t.tensor
|
||||
| eval i e t => (S.evalMap i (Fin.ofNat' e Fin.size_pos')) t.tensor
|
||||
|
||||
/-- Takes a tensor tree based on `Fin 0`, into the field `S.k`. -/
|
||||
def field {c : Fin 0 → S.C} (t : TensorTree S c) : S.k := S.castFin0ToField t.tensor
|
||||
|
||||
/-!
|
||||
|
@ -638,8 +644,8 @@ lemma contr_tensor {n : ℕ} {c : Fin n.succ.succ → S.C} {i : Fin n.succ.succ}
|
|||
|
||||
lemma neg_tensor (t : TensorTree S c) : (neg t).tensor = - t.tensor := rfl
|
||||
|
||||
lemma eval_tensor {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : ℕ)
|
||||
(t : TensorTree S c) : (eval i e t).tensor = (S.evalMap i (Fin.ofNat' e Fin.size_pos')) t.tensor := rfl
|
||||
lemma eval_tensor {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : ℕ) (t : TensorTree S c) :
|
||||
(eval i e t).tensor = (S.evalMap i (Fin.ofNat' e Fin.size_pos')) t.tensor := rfl
|
||||
|
||||
/-!
|
||||
|
||||
|
|
|
@ -176,6 +176,7 @@ def stringToTerm (str : String) : TermElabM Term := do
|
|||
match stx with
|
||||
| `(term| $e) => return e
|
||||
|
||||
/-- Specific types of tensors which appear which we want to elaborate in specific ways. -/
|
||||
def specialTypes : List (String × (Term → Term)) := [
|
||||
("CoeSort.coe Lorentz.complexCo", fun T =>
|
||||
Syntax.mkApp (mkIdent ``TensorTree.vecNodeE) #[mkIdent ``Fermion.complexLorentzTensor,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue