doc: Related to time ordering
This commit is contained in:
parent
c81d6ce246
commit
ee2134e448
4 changed files with 41 additions and 23 deletions
|
@ -367,7 +367,14 @@ lemma ι_timeOrderF_eq_of_equiv (a b : 𝓕.FieldOpFreeAlgebra) (h : a ≈ b) :
|
|||
simp only [LinearMap.mem_ker, ← map_sub]
|
||||
exact ι_timeOrderF_zero_of_mem_ideal (a - b) h
|
||||
|
||||
/-- Time ordering on `FieldOpAlgebra`. -/
|
||||
/-- For a field specification `𝓕`, `timeOrder` is the linear map
|
||||
|
||||
`FieldOpAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕`
|
||||
|
||||
defined as the decent of `ι ∘ₗ timeOrderF` from `FieldOpFreeAlgebra 𝓕` to `FieldOpAlgebra 𝓕`.
|
||||
This decent exists because `timeOrderF` is well-defined on equivalence classes.
|
||||
|
||||
The notation `𝓣(a)` is used for `timeOrder a`. -/
|
||||
noncomputable def timeOrder : FieldOpAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕 where
|
||||
toFun := Quotient.lift (ι.toLinearMap ∘ₗ timeOrderF) ι_timeOrderF_eq_of_equiv
|
||||
map_add' x y := by
|
||||
|
@ -423,8 +430,11 @@ lemma timeOrder_ofFieldOpList_singleton (φ : 𝓕.FieldOp) :
|
|||
𝓣(ofFieldOpList [φ]) = ofFieldOpList [φ] := by
|
||||
rw [ofFieldOpList, timeOrder_eq_ι_timeOrderF, timeOrderF_ofFieldOpListF_singleton]
|
||||
|
||||
/-- The time order of a list `𝓣(φ₀…φₙ)` is equal to
|
||||
`𝓢(φᵢ,φ₀…φᵢ₋₁) • φᵢ * 𝓣(φ₀…φᵢ₋₁φᵢ₊₁φₙ)` where `φᵢ` is the maximal time field in `φ₀…φₙ`-/
|
||||
/-- For a field specification `𝓕`, the time order operator acting on a
|
||||
list of `𝓕.FieldOp`, `𝓣(φ₀…φₙ)`, is equal to
|
||||
`𝓢(φᵢ,φ₀…φᵢ₋₁) • φᵢ * 𝓣(φ₀…φᵢ₋₁φᵢ₊₁φₙ)` where `φᵢ` is the maximal time field in `φ₀…φₙ`.
|
||||
|
||||
The proof of this result ultimitley relies on basic properties of ordering and signs. -/
|
||||
lemma timeOrder_eq_maxTimeField_mul_finset (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
|
||||
𝓣(ofFieldOpList (φ :: φs)) = 𝓢(𝓕 |>ₛ maxTimeField φ φs, 𝓕 |>ₛ ⟨(eraseMaxTimeField φ φs).get,
|
||||
(Finset.univ.filter (fun x =>
|
||||
|
|
|
@ -26,9 +26,12 @@ open HepLean.List
|
|||
|
||||
-/
|
||||
|
||||
/-- Time ordering for the `FieldOpFreeAlgebra` defined by taking
|
||||
/-- For a field specification `𝓕`, `timeOrderF` is the linear map
|
||||
`FieldOpFreeAlgebra 𝓕 →ₗ[ℂ] FieldOpFreeAlgebra 𝓕`
|
||||
defined by its action on the basis `ofCrAnListF φs`, taking
|
||||
`ofCrAnListF φs` to `crAnTimeOrderSign φs • ofCrAnListF (crAnTimeOrderList φs)`.
|
||||
The notation `𝓣ᶠ(a)` is used for the time-ordering of `a : FieldOpFreeAlgebra`. -/
|
||||
|
||||
The notation `𝓣ᶠ(a)` is used for `timeOrderF a` -/
|
||||
def timeOrderF : FieldOpFreeAlgebra 𝓕 →ₗ[ℂ] FieldOpFreeAlgebra 𝓕 :=
|
||||
Basis.constr ofCrAnListFBasis ℂ fun φs =>
|
||||
crAnTimeOrderSign φs • ofCrAnListF (crAnTimeOrderList φs)
|
||||
|
|
|
@ -191,14 +191,17 @@ lemma timeOrderList_eq_maxTimeField_timeOrderList (φ : 𝓕.FieldOp) (φs : Lis
|
|||
|
||||
-/
|
||||
|
||||
/-- For a field specification `𝓕`, `𝓕.crAnTimeOrderRel` is time ordering relation on
|
||||
`𝓕.CrAnFieldOp` defined to put those field operators with greatest time to the left on
|
||||
ordering a list. Thus `𝓕.crAnTimeOrderRel φ₀ φ₁` is true if and only if one of the following is
|
||||
true
|
||||
- `φ₀` is an outgoing asymptotic creation and annihilation field operator
|
||||
- `φ₁` is an incoming asymptotic creation and annihilation field operator
|
||||
- `φ₀` and `φ₁` are both position operators where `φ₀` occurs at a time greater then or equal to
|
||||
that of `φ₁`. -/
|
||||
/-- For a field specification `𝓕`, `𝓕.crAnTimeOrderRel` is a relation on
|
||||
`𝓕.CrAnFieldOp` representing time ordering.
|
||||
It is defined as such that `𝓕.crAnTimeOrderRel φ₀ φ₁` is true if and only if one of the following
|
||||
holds
|
||||
- `φ₀` is an *outgoing* asymptotic operator
|
||||
- `φ₁` is an *incoming* asymptotic field operator
|
||||
- `φ₀` and `φ₁` are both position field operators where
|
||||
the `SpaceTime` point of `φ₀` has a time *greater* then or equal to that of `φ₁`.
|
||||
|
||||
Thus, colloquially `𝓕.crAnTimeOrderRel φ₀ φ₁` if `φ₀` has time *greater* then or equal to `φ₁`.
|
||||
-/
|
||||
def crAnTimeOrderRel (a b : 𝓕.CrAnFieldOp) : Prop := 𝓕.timeOrderRel a.1 b.1
|
||||
|
||||
/-- The relation `crAnTimeOrderRel` is decidable, but not computablly so due to
|
||||
|
@ -218,9 +221,10 @@ instance : IsTrans 𝓕.CrAnFieldOp 𝓕.crAnTimeOrderRel where
|
|||
lemma crAnTimeOrderRel_refl (φ : 𝓕.CrAnFieldOp) : crAnTimeOrderRel φ φ := by
|
||||
exact (IsTotal.to_isRefl (r := 𝓕.crAnTimeOrderRel)).refl φ
|
||||
|
||||
/-- The sign associated with putting a list of `CrAnFieldOp` into time order (with
|
||||
the state of greatest time to the left).
|
||||
We pick up a minus sign for every fermion paired crossed. -/
|
||||
/-- For a field specification `𝓕`, and a list `φs` of `𝓕.CrAnFieldOp`,
|
||||
`𝓕.crAnTimeOrderSign φs` is the sign corresponding to the number of `ferimionic`-`fermionic`
|
||||
undertaken to time-order (i.e. order with respect to `𝓕.crAnTimeOrderRel`) `φs` using the
|
||||
insertion sort algorithm. -/
|
||||
def crAnTimeOrderSign (φs : List 𝓕.CrAnFieldOp) : ℂ :=
|
||||
Wick.koszulSign 𝓕.crAnStatistics 𝓕.crAnTimeOrderRel φs
|
||||
|
||||
|
@ -246,7 +250,8 @@ lemma crAnTimeOrderSign_swap_eq_time {φ ψ : 𝓕.CrAnFieldOp}
|
|||
crAnTimeOrderSign (φs ++ φ :: ψ :: φs') = crAnTimeOrderSign (φs ++ ψ :: φ :: φs') := by
|
||||
exact Wick.koszulSign_swap_eq_rel _ _ h1 h2 _ _
|
||||
|
||||
/-- Sort a list of `CrAnFieldOp` based on `crAnTimeOrderRel`. -/
|
||||
/-- For a field specification `𝓕`, and a list `φs` of `𝓕.CrAnFieldOp`,
|
||||
`𝓕.crAnTimeOrderList φs` is the list `φs` time-ordered using the insertion sort algorithm. -/
|
||||
def crAnTimeOrderList (φs : List 𝓕.CrAnFieldOp) : List 𝓕.CrAnFieldOp :=
|
||||
List.insertionSort 𝓕.crAnTimeOrderRel φs
|
||||
|
||||
|
|
|
@ -179,17 +179,17 @@ def perturbationTheory : Note where
|
|||
.name ``FieldSpecification.FieldOpAlgebra.fieldOpAlgebraGrade .complete,
|
||||
.name ``FieldSpecification.FieldOpAlgebra.superCommute .complete,
|
||||
.h1 "Time ordering",
|
||||
.name ``FieldSpecification.crAnTimeOrderRel .incomplete,
|
||||
.name ``FieldSpecification.crAnTimeOrderSign .incomplete,
|
||||
.name ``FieldSpecification.FieldOpFreeAlgebra.timeOrderF .incomplete,
|
||||
.name ``FieldSpecification.FieldOpAlgebra.timeOrder .incomplete,
|
||||
.name ``FieldSpecification.FieldOpAlgebra.timeOrder_eq_maxTimeField_mul_finset .incomplete,
|
||||
.name ``FieldSpecification.crAnTimeOrderRel .complete,
|
||||
.name ``FieldSpecification.crAnTimeOrderList .complete,
|
||||
.name ``FieldSpecification.crAnTimeOrderSign .complete,
|
||||
.name ``FieldSpecification.FieldOpFreeAlgebra.timeOrderF .complete,
|
||||
.name ``FieldSpecification.FieldOpAlgebra.timeOrder .complete,
|
||||
.name ``FieldSpecification.FieldOpAlgebra.timeOrder_eq_maxTimeField_mul_finset .complete,
|
||||
.h1 "Normal ordering",
|
||||
.name ``FieldSpecification.normalOrderRel .incomplete,
|
||||
.name ``FieldSpecification.normalOrderSign .incomplete,
|
||||
.name ``FieldSpecification.FieldOpFreeAlgebra.normalOrderF .incomplete,
|
||||
.name ``FieldSpecification.FieldOpAlgebra.normalOrder .incomplete,
|
||||
.h2 "Some lemmas",
|
||||
.name ``FieldSpecification.normalOrderSign_eraseIdx .incomplete,
|
||||
.name ``FieldSpecification.FieldOpAlgebra.ofCrAnOp_superCommute_normalOrder_ofCrAnList_sum .incomplete,
|
||||
.name ``FieldSpecification.FieldOpAlgebra.ofFieldOp_mul_normalOrder_ofFieldOpList_eq_sum .incomplete,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue