feat: Contr symm relations

This commit is contained in:
jstoobysmith 2024-10-21 12:20:43 +00:00
parent b92796cb2f
commit ef0d857cb7
4 changed files with 57 additions and 50 deletions

View file

@ -82,6 +82,10 @@ def contrCoContraction : complexContr ⊗ complexCo ⟶ 𝟙_ (Rep SL(2,)
rw [inv_mul_of_invertible (LorentzGroup.toComplex (SL2C.toLorentzGroup M))]
simp
lemma contrCoContraction_hom_tmul (ψ : complexContr) (φ : complexCo) :
contrCoContraction.hom (ψ ⊗ₜ φ) = ψ.toFin13 ⬝ᵥ φ.toFin13 := by
rfl
/-- The linear map from complexCo ⊗ complexContr to given by
summing over components of covariant Lorentz vector and
contravariant Lorentz vector in the
@ -96,5 +100,23 @@ def coContrContraction : complexCo ⊗ complexContr ⟶ 𝟙_ (Rep SL(2,)
rw [inv_mul_of_invertible (LorentzGroup.toComplex (SL2C.toLorentzGroup M))]
simp
lemma coContrContraction_hom_tmul (φ : complexCo) (ψ : complexContr) :
coContrContraction.hom (φ ⊗ₜ ψ) = φ.toFin13 ⬝ᵥ ψ.toFin13 := by
rfl
/-!
## Symmetry
-/
lemma contrCoContraction_tmul_symm (φ : complexContr) (ψ : complexCo) :
contrCoContraction.hom (φ ⊗ₜ ψ) = coContrContraction.hom (ψ ⊗ₜ φ) := by
rw [contrCoContraction_hom_tmul, coContrContraction_hom_tmul, dotProduct_comm]
lemma coContrContraction_tmul_symm (φ : complexCo) (ψ : complexContr) :
coContrContraction.hom (φ ⊗ₜ ψ) = contrCoContraction.hom (ψ ⊗ₜ φ) := by
rw [contrCoContraction_hom_tmul, coContrContraction_hom_tmul, dotProduct_comm]
end Lorentz
end