feat: Contr symm relations
This commit is contained in:
parent
b92796cb2f
commit
ef0d857cb7
4 changed files with 57 additions and 50 deletions
|
@ -178,6 +178,10 @@ def rightAltContraction : rightHanded ⊗ altRightHanded ⟶ 𝟙_ (Rep ℂ SL(2
|
|||
simp only [one_mulVec, vec2_dotProduct, Fin.isValue, RightHandedModule.toFin2ℂEquiv_apply,
|
||||
AltRightHandedModule.toFin2ℂEquiv_apply]
|
||||
|
||||
lemma rightAltContraction_hom_tmul (ψ : rightHanded) (φ : altRightHanded) :
|
||||
rightAltContraction.hom (ψ ⊗ₜ φ) = ψ.toFin2ℂ ⬝ᵥ φ.toFin2ℂ := by
|
||||
rfl
|
||||
|
||||
/--
|
||||
The linear map from altRightHandedWeyl ⊗ rightHandedWeyl to ℂ given by
|
||||
summing over components of altRightHandedWeyl and rightHandedWeyl in the
|
||||
|
@ -203,63 +207,31 @@ def altRightContraction : altRightHanded ⊗ rightHanded ⟶ 𝟙_ (Rep ℂ SL(2
|
|||
simp only [vecMul_one, vec2_dotProduct, Fin.isValue, AltRightHandedModule.toFin2ℂEquiv_apply,
|
||||
RightHandedModule.toFin2ℂEquiv_apply]
|
||||
|
||||
lemma leftAltContraction_apply_symm (ψ : leftHanded) (φ : altLeftHanded) :
|
||||
leftAltContraction.hom (ψ ⊗ₜ φ) = altLeftContraction.hom (φ ⊗ₜ ψ) := by
|
||||
rw [altLeftContraction_hom_tmul, leftAltContraction_hom_tmul]
|
||||
exact dotProduct_comm ψ.toFin2ℂ φ.toFin2ℂ
|
||||
lemma altRightContraction_hom_tmul (φ : altRightHanded) (ψ : rightHanded) :
|
||||
altRightContraction.hom (φ ⊗ₜ ψ) = φ.toFin2ℂ ⬝ᵥ ψ.toFin2ℂ := by
|
||||
rfl
|
||||
|
||||
/-- A manifestation of the statement that `ψ ψ' = - ψ' ψ` where `ψ` and `ψ'`
|
||||
are `leftHandedWeyl`. -/
|
||||
lemma leftAltContraction_apply_leftHandedAltEquiv (ψ ψ' : leftHanded) :
|
||||
leftAltContraction.hom (ψ ⊗ₜ leftHandedAltEquiv.hom.hom ψ') =
|
||||
- leftAltContraction.hom (ψ' ⊗ₜ leftHandedAltEquiv.hom.hom ψ) := by
|
||||
rw [leftAltContraction_hom_tmul, leftAltContraction_hom_tmul,
|
||||
leftHandedAltEquiv_hom_hom_apply, leftHandedAltEquiv_hom_hom_apply]
|
||||
simp only [CategoryTheory.Monoidal.transportStruct_tensorUnit,
|
||||
CategoryTheory.Equivalence.symm_functor, Action.functorCategoryEquivalence_inverse,
|
||||
Action.FunctorCategoryEquivalence.inverse_obj_V, CategoryTheory.Monoidal.tensorUnit_obj,
|
||||
cons_mulVec, cons_dotProduct, zero_mul, one_mul, dotProduct_empty, add_zero, zero_add, neg_mul,
|
||||
empty_mulVec, LinearEquiv.apply_symm_apply, dotProduct_cons, mul_neg, neg_add_rev, neg_neg]
|
||||
ring
|
||||
/-!
|
||||
|
||||
/-- A manifestation of the statement that `φ φ' = - φ' φ` where `φ` and `φ'` are
|
||||
`altLeftHandedWeyl`. -/
|
||||
lemma leftAltContraction_apply_leftHandedAltEquiv_inv (φ φ' : altLeftHanded) :
|
||||
leftAltContraction.hom (leftHandedAltEquiv.inv.hom φ ⊗ₜ φ') =
|
||||
- leftAltContraction.hom (leftHandedAltEquiv.inv.hom φ' ⊗ₜ φ) := by
|
||||
rw [leftAltContraction_hom_tmul, leftAltContraction_hom_tmul,
|
||||
leftHandedAltEquiv_inv_hom_apply, leftHandedAltEquiv_inv_hom_apply]
|
||||
simp only [CategoryTheory.Monoidal.transportStruct_tensorUnit,
|
||||
CategoryTheory.Equivalence.symm_functor, Action.functorCategoryEquivalence_inverse,
|
||||
Action.FunctorCategoryEquivalence.inverse_obj_V, CategoryTheory.Monoidal.tensorUnit_obj,
|
||||
cons_mulVec, cons_dotProduct, zero_mul, neg_mul, one_mul, dotProduct_empty, add_zero, zero_add,
|
||||
empty_mulVec, LinearEquiv.apply_symm_apply, neg_add_rev, neg_neg]
|
||||
ring
|
||||
## Symmetry properties
|
||||
|
||||
informal_lemma leftAltWeylContraction_symm_altLeftWeylContraction where
|
||||
math :≈ "The linear map altLeftWeylContraction is leftAltWeylContraction composed
|
||||
with the braiding of the tensor product."
|
||||
deps :≈ [``leftAltContraction, ``altLeftContraction]
|
||||
-/
|
||||
|
||||
informal_lemma altLeftWeylContraction_invariant where
|
||||
math :≈ "The contraction altLeftWeylContraction is invariant with respect to
|
||||
the action of SL(2,C) on leftHandedWeyl and altLeftHandedWeyl."
|
||||
deps :≈ [``altLeftContraction]
|
||||
lemma leftAltContraction_tmul_symm (ψ : leftHanded) (φ : altLeftHanded) :
|
||||
leftAltContraction.hom (ψ ⊗ₜ[ℂ] φ) = altLeftContraction.hom (φ ⊗ₜ[ℂ] ψ) := by
|
||||
rw [leftAltContraction_hom_tmul, altLeftContraction_hom_tmul, dotProduct_comm]
|
||||
|
||||
informal_lemma rightAltWeylContraction_invariant where
|
||||
math :≈ "The contraction rightAltWeylContraction is invariant with respect to
|
||||
the action of SL(2,C) on rightHandedWeyl and altRightHandedWeyl."
|
||||
deps :≈ [``rightAltContraction]
|
||||
lemma altLeftContraction_tmul_symm (φ : altLeftHanded) (ψ : leftHanded) :
|
||||
altLeftContraction.hom (φ ⊗ₜ[ℂ] ψ) = leftAltContraction.hom (ψ ⊗ₜ[ℂ] φ) := by
|
||||
rw [leftAltContraction_tmul_symm]
|
||||
|
||||
informal_lemma rightAltWeylContraction_symm_altRightWeylContraction where
|
||||
math :≈ "The linear map altRightWeylContraction is rightAltWeylContraction composed
|
||||
with the braiding of the tensor product."
|
||||
deps :≈ [``rightAltContraction, ``altRightContraction]
|
||||
lemma rightAltContraction_tmul_symm (ψ : rightHanded) (φ : altRightHanded) :
|
||||
rightAltContraction.hom (ψ ⊗ₜ[ℂ] φ) = altRightContraction.hom (φ ⊗ₜ[ℂ] ψ) := by
|
||||
rw [rightAltContraction_hom_tmul, altRightContraction_hom_tmul, dotProduct_comm]
|
||||
|
||||
informal_lemma altRightWeylContraction_invariant where
|
||||
math :≈ "The contraction altRightWeylContraction is invariant with respect to
|
||||
the action of SL(2,C) on rightHandedWeyl and altRightHandedWeyl."
|
||||
deps :≈ [``altRightContraction]
|
||||
lemma altRightContraction_tmul_symm (φ : altRightHanded) (ψ : rightHanded) :
|
||||
altRightContraction.hom (φ ⊗ₜ[ℂ] ψ) = rightAltContraction.hom (ψ ⊗ₜ[ℂ] φ) := by
|
||||
rw [rightAltContraction_tmul_symm]
|
||||
|
||||
end
|
||||
end Fermion
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue