From f03d063c86c4b01c589344ce4c0a5d2708cf6671 Mon Sep 17 00:00:00 2001 From: jstoobysmith <72603918+jstoobysmith@users.noreply.github.com> Date: Wed, 3 Jul 2024 07:56:30 -0400 Subject: [PATCH] refactor: Remove double empty lines --- .../MSSMNu/OrthogY3B3/PlaneWithY3B3.lean | 5 ----- .../MSSMNu/OrthogY3B3/ToSols.lean | 4 ---- HepLean/AnomalyCancellation/PureU1/Basic.lean | 3 --- .../AnomalyCancellation/PureU1/BasisLinear.lean | 2 -- HepLean/AnomalyCancellation/PureU1/ConstAbs.lean | 5 ----- .../PureU1/Even/BasisLinear.lean | 5 ----- .../PureU1/Even/Parameterization.lean | 3 --- .../PureU1/LineInPlaneCond.lean | 5 ----- .../AnomalyCancellation/PureU1/LowDim/Three.lean | 1 - .../PureU1/Odd/BasisLinear.lean | 7 ------- .../PureU1/Odd/LineInCubic.lean | 4 ---- .../PureU1/Odd/Parameterization.lean | 1 - .../AnomalyCancellation/PureU1/Permutations.lean | 4 ---- HepLean/AnomalyCancellation/PureU1/Sort.lean | 1 - .../AnomalyCancellation/PureU1/VectorLike.lean | 2 -- HepLean/AnomalyCancellation/SM/Basic.lean | 1 - .../SM/NoGrav/One/Lemmas.lean | 4 ---- .../SM/NoGrav/One/LinearParameterization.lean | 3 --- HepLean/AnomalyCancellation/SM/Permutations.lean | 6 ------ HepLean/AnomalyCancellation/SMNu/Basic.lean | 5 ----- HepLean/AnomalyCancellation/SMNu/FamilyMaps.lean | 1 - .../AnomalyCancellation/SMNu/NoGrav/Basic.lean | 1 - .../AnomalyCancellation/SMNu/Ordinary/Basic.lean | 2 -- .../SMNu/Ordinary/DimSevenPlane.lean | 3 --- .../AnomalyCancellation/SMNu/Permutations.lean | 7 ------- .../AnomalyCancellation/SMNu/PlusU1/BMinusL.lean | 1 - .../AnomalyCancellation/SMNu/PlusU1/Basic.lean | 1 - .../SMNu/PlusU1/BoundPlaneDim.lean | 2 -- .../SMNu/PlusU1/HyperCharge.lean | 2 -- .../SMNu/PlusU1/PlaneNonSols.lean | 3 --- .../AnomalyCancellation/SMNu/PlusU1/QuadSol.lean | 1 - .../SMNu/PlusU1/QuadSolToSol.lean | 2 -- HepLean/FeynmanDiagrams/Basic.lean | 10 ---------- .../FeynmanDiagrams/Instances/ComplexScalar.lean | 6 ------ HepLean/FeynmanDiagrams/Instances/Phi4.lean | 4 ---- HepLean/FeynmanDiagrams/Momentum.lean | 6 ------ HepLean/FlavorPhysics/CKMMatrix/Basic.lean | 7 ------- HepLean/FlavorPhysics/CKMMatrix/Invariants.lean | 4 ---- .../FlavorPhysics/CKMMatrix/PhaseFreedom.lean | 3 --- HepLean/FlavorPhysics/CKMMatrix/Relations.lean | 13 ------------- HepLean/FlavorPhysics/CKMMatrix/Rows.lean | 2 -- .../StandardParameterization/Basic.lean | 3 --- .../StandardParameters.lean | 16 ---------------- HepLean/Mathematics/LinearMaps.lean | 5 ----- HepLean/Mathematics/SO3/Basic.lean | 5 ----- HepLean/SpaceTime/Basic.lean | 1 - HepLean/SpaceTime/LorentzAlgebra/Basic.lean | 8 -------- HepLean/SpaceTime/LorentzGroup/Basic.lean | 1 - HepLean/SpaceTime/LorentzGroup/Boosts.lean | 4 ---- .../SpaceTime/LorentzGroup/Orthochronous.lean | 3 --- HepLean/SpaceTime/LorentzGroup/Proper.lean | 4 ---- HepLean/SpaceTime/LorentzGroup/Rotations.lean | 2 -- .../LorentzVector/AsSelfAdjointMatrix.lean | 1 - HepLean/SpaceTime/LorentzVector/Basic.lean | 1 - HepLean/SpaceTime/LorentzVector/NormOne.lean | 10 ---------- HepLean/SpaceTime/MinkowskiMetric.lean | 9 --------- HepLean/SpaceTime/SL2C/Basic.lean | 2 -- HepLean/StandardModel/HiggsBoson/Basic.lean | 2 -- .../StandardModel/HiggsBoson/TargetSpace.lean | 2 -- HepLean/StandardModel/Representations.lean | 1 - 60 files changed, 232 deletions(-) diff --git a/HepLean/AnomalyCancellation/MSSMNu/OrthogY3B3/PlaneWithY3B3.lean b/HepLean/AnomalyCancellation/MSSMNu/OrthogY3B3/PlaneWithY3B3.lean index d7d984d..9832ed2 100644 --- a/HepLean/AnomalyCancellation/MSSMNu/OrthogY3B3/PlaneWithY3B3.lean +++ b/HepLean/AnomalyCancellation/MSSMNu/OrthogY3B3/PlaneWithY3B3.lean @@ -18,8 +18,6 @@ The plane spanned by Y₃, B₃ and third orthogonal point. -/ - - universe v u namespace MSSMACC @@ -93,7 +91,6 @@ lemma planeY₃B₃_val_eq' (R : MSSMACC.AnomalyFreePerp) (a b c : ℚ) (hR' : R rw [ha, hb, hc] simp - lemma planeY₃B₃_quad (R : MSSMACC.AnomalyFreePerp) (a b c : ℚ) : accQuad (planeY₃B₃ R a b c).val = c * (2 * a * quadBiLin Y₃.val R.val + 2 * b * quadBiLin B₃.val R.val + c * quadBiLin R.val R.val) := by @@ -184,7 +181,6 @@ def lineCube (R : MSSMACC.AnomalyFreePerp) (a₁ a₂ a₃ : ℚ) : (3 * a₃ * cubeTriLin R.val R.val Y₃.val - a₁ * cubeTriLin R.val R.val R.val) (3 * (a₁ * cubeTriLin R.val R.val B₃.val - a₂ * cubeTriLin R.val R.val Y₃.val)) - lemma lineCube_smul (R : MSSMACC.AnomalyFreePerp) (a b c d : ℚ) : lineCube R (d * a) (d * b) (d * c) = d • lineCube R a b c := by apply ACCSystemLinear.LinSols.ext @@ -241,5 +237,4 @@ lemma α₂_proj_zero (T : MSSMACC.Sols) (h1 : α₃ (proj T.1.1) = 0) : end proj - end MSSMACC diff --git a/HepLean/AnomalyCancellation/MSSMNu/OrthogY3B3/ToSols.lean b/HepLean/AnomalyCancellation/MSSMNu/OrthogY3B3/ToSols.lean index 2023709..659f847 100644 --- a/HepLean/AnomalyCancellation/MSSMNu/OrthogY3B3/ToSols.lean +++ b/HepLean/AnomalyCancellation/MSSMNu/OrthogY3B3/ToSols.lean @@ -18,7 +18,6 @@ To define `toSols` we define a series of other maps from various subtypes of `MSSMACC.AnomalyFreePerp × ℚ × ℚ × ℚ` to `MSSMACC.Sols`. And show that these maps form a surjection on certain subtypes of `MSSMACC.Sols`. - # References The main reference for the material in this file is: @@ -78,7 +77,6 @@ lemma linEqPropSol_iff_proj_linEqProp (R : MSSMACC.Sols) : rw [h.2.2] simp - /-- A condition which is satisfied if the plane spanned by `R`, `Y₃` and `B₃` lies entirely in the quadratic surface. -/ def InQuadProp (R : MSSMACC.AnomalyFreePerp) : Prop := @@ -237,7 +235,6 @@ not surjective. -/ def toSolNS : MSSMACC.AnomalyFreePerp × ℚ × ℚ × ℚ → MSSMACC.Sols := fun (R, a, _ , _) => a • AnomalyFreeMk'' (toSolNSQuad R) (toSolNSQuad_cube R) - /-- A map from `Sols` to `MSSMACC.AnomalyFreePerp × ℚ × ℚ × ℚ` which on elements of `notInLineEqSol` will produce a right inverse to `toSolNS`. -/ def toSolNSProj (T : MSSMACC.Sols) : MSSMACC.AnomalyFreePerp × ℚ × ℚ × ℚ := @@ -457,7 +454,6 @@ theorem toSol_surjective : Function.Surjective toSol := by simp at h₃ exact toSol_inQuadCube ⟨T, And.intro h₁ (And.intro h₂ h₃)⟩ - end AnomalyFreePerp end MSSMACC diff --git a/HepLean/AnomalyCancellation/PureU1/Basic.lean b/HepLean/AnomalyCancellation/PureU1/Basic.lean index c26827f..b5ab703 100644 --- a/HepLean/AnomalyCancellation/PureU1/Basic.lean +++ b/HepLean/AnomalyCancellation/PureU1/Basic.lean @@ -16,7 +16,6 @@ We define the anomaly cancellation conditions for a pure U(1) gauge theory with universe v u open Nat - open Finset namespace PureU1 @@ -35,7 +34,6 @@ def accGrav (n : ℕ) : ((PureU1Charges n).Charges →ₗ[ℚ] ℚ) where simp [HSMul.hSMul, SMul.smul] rw [← Finset.mul_sum] - /-- The symmetric trilinear form used to define the cubic anomaly. -/ @[simps!] def accCubeTriLinSymm {n : ℕ} : TriLinearSymm (PureU1Charges n).Charges := TriLinearSymm.mk₃ @@ -162,7 +160,6 @@ lemma sum_of_charges {n : ℕ} (f : Fin k → (PureU1 n).Charges) (j : Fin n) : erw [← hlt] simp - lemma sum_of_anomaly_free_linear {n : ℕ} (f : Fin k → (PureU1 n).LinSols) (j : Fin n) : (∑ i : Fin k, (f i)).1 j = (∑ i : Fin k, (f i).1 j) := by induction k diff --git a/HepLean/AnomalyCancellation/PureU1/BasisLinear.lean b/HepLean/AnomalyCancellation/PureU1/BasisLinear.lean index f9bbcc4..746e2d6 100644 --- a/HepLean/AnomalyCancellation/PureU1/BasisLinear.lean +++ b/HepLean/AnomalyCancellation/PureU1/BasisLinear.lean @@ -75,7 +75,6 @@ def asLinSols (j : Fin n) : (PureU1 n.succ).LinSols := intro hk simp at hk⟩ - lemma sum_of_vectors {n : ℕ} (f : Fin k → (PureU1 n).LinSols) (j : Fin n) : (∑ i : Fin k, (f i)).1 j = (∑ i : Fin k, (f i).1 j) := sum_of_anomaly_free_linear (fun i => f i) j @@ -134,5 +133,4 @@ lemma finrank_AnomalyFreeLinear : end BasisLinear - end PureU1 diff --git a/HepLean/AnomalyCancellation/PureU1/ConstAbs.lean b/HepLean/AnomalyCancellation/PureU1/ConstAbs.lean index a5e4004..3189e4c 100644 --- a/HepLean/AnomalyCancellation/PureU1/ConstAbs.lean +++ b/HepLean/AnomalyCancellation/PureU1/ConstAbs.lean @@ -120,7 +120,6 @@ lemma boundary_accGrav' (k : Fin n) : accGrav n.succ S = intro i simp - lemma boundary_accGrav'' (k : Fin n) (hk : Boundary S k) : accGrav n.succ S = (2 * ↑↑k + 1 - ↑n) * S (0 : Fin n.succ) := by rw [boundary_accGrav' k] @@ -165,7 +164,6 @@ lemma not_hasBoundary_grav (hnot : ¬ (HasBoundary S)) : accGrav n.succ S = n.succ * S (0 : Fin n.succ) := by simp [accGrav, ← not_hasBoundry_zero hS hnot] - lemma AFL_hasBoundary (h : A.val (0 : Fin n.succ) ≠ 0) : HasBoundary A.val := by by_contra hn have h0 := not_hasBoundary_grav hA hn @@ -253,12 +251,10 @@ lemma AFL_even_above (A : (PureU1 (2 * n.succ)).LinSols) (h : ConstAbsSorted A.v rfl exact AFL_even_above' h hA i - end charges end ConstAbsSorted - namespace ConstAbs theorem boundary_value_odd (S : (PureU1 (2 * n + 1)).LinSols) (hs : ConstAbs S.val) : @@ -266,7 +262,6 @@ theorem boundary_value_odd (S : (PureU1 (2 * n + 1)).LinSols) (hs : ConstAbs S.v have hS := And.intro (constAbs_sort hs) (sort_sorted S.val) sortAFL_zero S (ConstAbsSorted.AFL_odd (sortAFL S) hS) - theorem boundary_value_even (S : (PureU1 (2 * n.succ)).LinSols) (hs : ConstAbs S.val) : VectorLikeEven S.val := by have hS := And.intro (constAbs_sort hs) (sort_sorted S.val) diff --git a/HepLean/AnomalyCancellation/PureU1/Even/BasisLinear.lean b/HepLean/AnomalyCancellation/PureU1/Even/BasisLinear.lean index 994c01c..1d7e915 100644 --- a/HepLean/AnomalyCancellation/PureU1/Even/BasisLinear.lean +++ b/HepLean/AnomalyCancellation/PureU1/Even/BasisLinear.lean @@ -190,7 +190,6 @@ lemma basis!_on_other {k : Fin n} {j : Fin (2 * n.succ)} (h1 : j ≠ δ!₁ k) simp [basis!AsCharges] simp_all only [ne_eq, ↓reduceIte] - lemma basis!_on_δ!₁_other {k j : Fin n} (h : k ≠ j) : basis!AsCharges k (δ!₁ j) = 0 := by simp [basis!AsCharges] @@ -310,7 +309,6 @@ lemma basis!_accCube (j : Fin n) : simp [basis!_δ!₂_eq_minus_δ!₁] ring - /-- The first part of the basis as `LinSols`. -/ @[simps!] def basis (j : Fin n.succ) : (PureU1 (2 * n.succ)).LinSols := @@ -587,7 +585,6 @@ theorem basis!_linear_independent : LinearIndependent ℚ (@basis! n) := by rw [P!'_val] at h1 exact P!_zero f h1 - theorem basisa_linear_independent : LinearIndependent ℚ (@basisa n) := by apply Fintype.linearIndependent_iff.mpr intro f h @@ -663,7 +660,6 @@ lemma Pa_eq (g g' : Fin n.succ → ℚ) (f f' : Fin n → ℚ) : rw [← join_ext] exact Pa'_eq _ _ - lemma basisa_card : Fintype.card ((Fin n.succ) ⊕ (Fin n)) = FiniteDimensional.finrank ℚ (PureU1 (2 * n.succ)).LinSols := by erw [BasisLinear.finrank_AnomalyFreeLinear] @@ -675,7 +671,6 @@ noncomputable def basisaAsBasis : Basis (Fin (succ n) ⊕ Fin n) ℚ (PureU1 (2 * succ n)).LinSols := basisOfLinearIndependentOfCardEqFinrank (@basisa_linear_independent n) basisa_card - lemma span_basis (S : (PureU1 (2 * n.succ)).LinSols) : ∃ (g : Fin n.succ → ℚ) (f : Fin n → ℚ), S.val = P g + P! f := by have h := (mem_span_range_iff_exists_fun ℚ).mp (Basis.mem_span basisaAsBasis S) diff --git a/HepLean/AnomalyCancellation/PureU1/Even/Parameterization.lean b/HepLean/AnomalyCancellation/PureU1/Even/Parameterization.lean index aa58459..db11575 100644 --- a/HepLean/AnomalyCancellation/PureU1/Even/Parameterization.lean +++ b/HepLean/AnomalyCancellation/PureU1/Even/Parameterization.lean @@ -134,7 +134,6 @@ theorem generic_case {S : (PureU1 (2 * n.succ)).Sols} (h : GenericCase S) : simp at h exact h - lemma special_case_lineInCubic {S : (PureU1 (2 * n.succ)).Sols} (h : SpecialCase S) : LineInCubic S.1.1 := by intro g f hS a b @@ -152,7 +151,6 @@ lemma special_case_lineInCubic {S : (PureU1 (2 * n.succ)).Sols} erw [h] simp - lemma special_case_lineInCubic_perm {S : (PureU1 (2 * n.succ)).Sols} (h : ∀ (M : (FamilyPermutations (2 * n.succ)).group), SpecialCase ((FamilyPermutations (2 * n.succ)).solAction.toFun S M)) : @@ -160,7 +158,6 @@ lemma special_case_lineInCubic_perm {S : (PureU1 (2 * n.succ)).Sols} intro M exact special_case_lineInCubic (h M) - theorem special_case {S : (PureU1 (2 * n.succ.succ)).Sols} (h : ∀ (M : (FamilyPermutations (2 * n.succ.succ)).group), SpecialCase ((FamilyPermutations (2 * n.succ.succ)).solAction.toFun S M)) : diff --git a/HepLean/AnomalyCancellation/PureU1/LineInPlaneCond.lean b/HepLean/AnomalyCancellation/PureU1/LineInPlaneCond.lean index 97f0209..4cfb260 100644 --- a/HepLean/AnomalyCancellation/PureU1/LineInPlaneCond.lean +++ b/HepLean/AnomalyCancellation/PureU1/LineInPlaneCond.lean @@ -26,7 +26,6 @@ We will show that `n ≥ 4` the `line in plane` condition on solutions implies t -/ - namespace PureU1 open BigOperators @@ -52,7 +51,6 @@ lemma lineInPlaneCond_perm {S : (PureU1 (n)).LinSols} (hS : LineInPlaneCond S) all_goals simp_all only [ne_eq, Equiv.invFun_as_coe, EmbeddingLike.apply_eq_iff_eq, not_false_eq_true] - lemma lineInPlaneCond_eq_last' {S : (PureU1 (n.succ.succ)).LinSols} (hS : LineInPlaneCond S) (h : ¬ (S.val ((Fin.last n).castSucc))^2 = (S.val ((Fin.last n).succ))^2 ) : (2 - n) * S.val (Fin.last (n + 1)) = @@ -157,7 +155,6 @@ lemma linesInPlane_four (S : (PureU1 4).Sols) (hS : LineInPlaneCond S.1.1) : simp at h6 simp_all - lemma linesInPlane_eq_sq_four {S : (PureU1 4).Sols} (hS : LineInPlaneCond S.1.1) : ∀ (i j : Fin 4) (_ : i ≠ j), ConstAbsProp (S.val i, S.val j) := by @@ -168,7 +165,6 @@ lemma linesInPlane_eq_sq_four {S : (PureU1 4).Sols} (lineInPlaneCond_perm hS M) exact linesInPlane_four S' hS' - lemma linesInPlane_constAbs_four (S : (PureU1 4).Sols) (hS : LineInPlaneCond S.1.1) : ConstAbs S.val := by intro i j @@ -183,5 +179,4 @@ theorem linesInPlane_constAbs_AF (S : (PureU1 (n.succ.succ.succ.succ)).Sols) exact linesInPlane_constAbs_four S hS exact linesInPlane_constAbs hS - end PureU1 diff --git a/HepLean/AnomalyCancellation/PureU1/LowDim/Three.lean b/HepLean/AnomalyCancellation/PureU1/LowDim/Three.lean index 15552a3..be0d389 100644 --- a/HepLean/AnomalyCancellation/PureU1/LowDim/Three.lean +++ b/HepLean/AnomalyCancellation/PureU1/LowDim/Three.lean @@ -50,7 +50,6 @@ def solOfLinear (S : (PureU1 3).LinSols) ⟨⟨S, by intro i; simp at i; exact Fin.elim0 i⟩, (cube_for_linSol S).mp hS⟩ - theorem solOfLinear_surjects (S : (PureU1 3).Sols) : ∃ (T : (PureU1 3).LinSols) (hT : T.val (0 : Fin 3) = 0 ∨ T.val (1 : Fin 3) = 0 ∨ T.val (2 : Fin 3) = 0), solOfLinear T hT = S := by diff --git a/HepLean/AnomalyCancellation/PureU1/Odd/BasisLinear.lean b/HepLean/AnomalyCancellation/PureU1/Odd/BasisLinear.lean index c6132d0..c7dc70e 100644 --- a/HepLean/AnomalyCancellation/PureU1/Odd/BasisLinear.lean +++ b/HepLean/AnomalyCancellation/PureU1/Odd/BasisLinear.lean @@ -23,7 +23,6 @@ namespace PureU1 variable {n : ℕ} - namespace VectorLikeOddPlane lemma split_odd! (n : ℕ) : (1 + n) + n = 2 * n +1 := by @@ -484,7 +483,6 @@ lemma P_P_P!_accCube (g : Fin n → ℚ) (j : Fin n) : simp only [mul_zero, add_zero] simp - lemma P_zero (f : Fin n → ℚ) (h : P f = 0) : ∀ i, f i = 0 := by intro i erw [← P_δ₁ f] @@ -572,7 +570,6 @@ theorem basis!_linear_independent : LinearIndependent ℚ (@basis! n) := by rw [P!'_val] at h1 exact P!_zero f h1 - theorem basisa_linear_independent : LinearIndependent ℚ (@basisa n.succ) := by apply Fintype.linearIndependent_iff.mpr intro f h @@ -648,8 +645,6 @@ lemma Pa_eq (g g' : Fin n.succ → ℚ) (f f' : Fin n.succ → ℚ) : rw [← join_ext] exact Pa'_eq _ _ - - lemma basisa_card : Fintype.card ((Fin n.succ) ⊕ (Fin n.succ)) = FiniteDimensional.finrank ℚ (PureU1 (2 * n.succ + 1)).LinSols := by erw [BasisLinear.finrank_AnomalyFreeLinear] @@ -706,8 +701,6 @@ lemma span_basis_swap! {S : (PureU1 (2 * n.succ + 1)).LinSols} (j : Fin n.succ) apply swap!_as_add at hS exact hS - end VectorLikeOddPlane - end PureU1 diff --git a/HepLean/AnomalyCancellation/PureU1/Odd/LineInCubic.lean b/HepLean/AnomalyCancellation/PureU1/Odd/LineInCubic.lean index 477c597..3cc030f 100644 --- a/HepLean/AnomalyCancellation/PureU1/Odd/LineInCubic.lean +++ b/HepLean/AnomalyCancellation/PureU1/Odd/LineInCubic.lean @@ -54,7 +54,6 @@ lemma lineInCubic_expand {S : (PureU1 (2 * n + 1)).LinSols} (h : LineInCubic S) rw [← h1] ring - lemma line_in_cubic_P_P_P! {S : (PureU1 (2 * n + 1)).LinSols} (h : LineInCubic S) : ∀ (g : Fin n → ℚ) (f : Fin n → ℚ) (_ : S.val = P g + P! f), accCubeTriLinSymm (P g) (P g) (P! f) = 0 := by @@ -62,8 +61,6 @@ lemma line_in_cubic_P_P_P! {S : (PureU1 (2 * n + 1)).LinSols} (h : LineInCubic S linear_combination 2 / 3 * (lineInCubic_expand h g f hS 1 1 ) - (lineInCubic_expand h g f hS 1 2 ) / 6 - - /-- We say a `LinSol` satisfies `lineInCubicPerm` if all its permutations satisfy `lineInCubic`. -/ def LineInCubicPerm (S : (PureU1 (2 * n + 1)).LinSols) : Prop := ∀ (M : (FamilyPermutations (2 * n + 1)).group ), @@ -86,7 +83,6 @@ lemma lineInCubicPerm_permute {S : (PureU1 (2 * n + 1)).LinSols} rw [ht] exact hS (M * M') - lemma lineInCubicPerm_swap {S : (PureU1 (2 * n.succ + 1)).LinSols} (LIC : LineInCubicPerm S) : ∀ (j : Fin n.succ) (g f : Fin n.succ → ℚ) (_ : S.val = Pa g f) , diff --git a/HepLean/AnomalyCancellation/PureU1/Odd/Parameterization.lean b/HepLean/AnomalyCancellation/PureU1/Odd/Parameterization.lean index 1ded1c6..56ddddd 100644 --- a/HepLean/AnomalyCancellation/PureU1/Odd/Parameterization.lean +++ b/HepLean/AnomalyCancellation/PureU1/Odd/Parameterization.lean @@ -133,7 +133,6 @@ theorem generic_case {S : (PureU1 (2 * n.succ + 1)).Sols} (h : GenericCase S) : simp at h exact h - lemma special_case_lineInCubic {S : (PureU1 (2 * n.succ + 1)).Sols} (h : SpecialCase S) : LineInCubic S.1.1 := by diff --git a/HepLean/AnomalyCancellation/PureU1/Permutations.lean b/HepLean/AnomalyCancellation/PureU1/Permutations.lean index 084e2ce..c585e5c 100644 --- a/HepLean/AnomalyCancellation/PureU1/Permutations.lean +++ b/HepLean/AnomalyCancellation/PureU1/Permutations.lean @@ -96,7 +96,6 @@ def FamilyPermutations (n : ℕ) : ACCSystemGroupAction (PureU1 n) where exact Fin.elim0 i cubicInvariant := accCube_invariant - lemma FamilyPermutations_charges_apply (S : (PureU1 n).Charges) (i : Fin n) (f : (FamilyPermutations n).group) : ((FamilyPermutations n).rep f S) i = S (f.invFun i) := by @@ -107,7 +106,6 @@ lemma FamilyPermutations_anomalyFreeLinear_apply (S : (PureU1 n).LinSols) ((FamilyPermutations n).linSolRep f S).val i = S.val (f.invFun i) := by rfl - /-- The permutation which swaps i and j. TODO: Replace with: `Equiv.swap`. -/ def pairSwap {n : ℕ} (i j : Fin n) : (FamilyPermutations n).group where toFun s := @@ -247,7 +245,6 @@ lemma permThreeInj_fst_apply : ⟨i, permThreeInj_fst hij hjk hik⟩ = 0 := by exact (Equiv.symm_apply_eq (Function.Embedding.toEquivRange (permThreeInj hij hjk hik))).mpr rfl - lemma permThreeInj_snd : j ∈ Set.range ⇑(permThreeInj hij hjk hik) := by simp only [Set.mem_range] use 1 @@ -338,5 +335,4 @@ lemma Prop_three (P : ℚ × ℚ × ℚ → Prop) {S : (PureU1 n).LinSols} erw [permThree_fst,permThree_snd, permThree_thd] at h1 exact h1 - end PureU1 diff --git a/HepLean/AnomalyCancellation/PureU1/Sort.lean b/HepLean/AnomalyCancellation/PureU1/Sort.lean index 3438d32..eccf84b 100644 --- a/HepLean/AnomalyCancellation/PureU1/Sort.lean +++ b/HepLean/AnomalyCancellation/PureU1/Sort.lean @@ -67,7 +67,6 @@ def sortAFL {n : ℕ} (S : (PureU1 n).LinSols) : (PureU1 n).LinSols := lemma sortAFL_val {n : ℕ} (S : (PureU1 n).LinSols) : (sortAFL S).val = sort S.val := by rfl - lemma sortAFL_zero {n : ℕ} (S : (PureU1 n).LinSols) (hS : sortAFL S = 0) : S = 0 := by apply ACCSystemLinear.LinSols.ext have h1 : sort S.val = 0 := by diff --git a/HepLean/AnomalyCancellation/PureU1/VectorLike.lean b/HepLean/AnomalyCancellation/PureU1/VectorLike.lean index 29d6daa..2eed792 100644 --- a/HepLean/AnomalyCancellation/PureU1/VectorLike.lean +++ b/HepLean/AnomalyCancellation/PureU1/VectorLike.lean @@ -30,7 +30,6 @@ variable {n : ℕ} -/ lemma split_equal (n : ℕ) : n + n = 2 * n := (Nat.two_mul n).symm - lemma split_odd (n : ℕ) : n + 1 + n = 2 * n + 1 := by omega /-- A charge configuration for n even is vector like if when sorted the `i`th element @@ -40,5 +39,4 @@ def VectorLikeEven (S : (PureU1 (2 * n)).Charges) : Prop := ∀ (i : Fin n), (sort S) (Fin.cast (split_equal n) (Fin.castAdd n i)) = - (sort S) (Fin.cast (split_equal n) (Fin.natAdd n i)) - end PureU1 diff --git a/HepLean/AnomalyCancellation/SM/Basic.lean b/HepLean/AnomalyCancellation/SM/Basic.lean index 81f6804..f067f5e 100644 --- a/HepLean/AnomalyCancellation/SM/Basic.lean +++ b/HepLean/AnomalyCancellation/SM/Basic.lean @@ -319,5 +319,4 @@ lemma accCube_ext {S T : (SMCharges n).Charges} rfl repeat rw [h1] - end SMACCs diff --git a/HepLean/AnomalyCancellation/SM/NoGrav/One/Lemmas.lean b/HepLean/AnomalyCancellation/SM/NoGrav/One/Lemmas.lean index a14233f..c8d46eb 100644 --- a/HepLean/AnomalyCancellation/SM/NoGrav/One/Lemmas.lean +++ b/HepLean/AnomalyCancellation/SM/NoGrav/One/Lemmas.lean @@ -24,7 +24,6 @@ open SMCharges open SMACCs open BigOperators - lemma E_zero_iff_Q_zero {S : (SMNoGrav 1).Sols} : Q S.val (0 : Fin 1) = 0 ↔ E S.val (0 : Fin 1) = 0 := by let S' := linearParameters.bijection.symm S.1.1 @@ -38,8 +37,6 @@ lemma E_zero_iff_Q_zero {S : (SMNoGrav 1).Sols} : Q S.val (0 : Fin 1) = 0 ↔ intro hE exact S'.cubic_zero_E'_zero hC hE - - lemma accGrav_Q_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) = 0) : accGrav S.val = 0 := by rw [accGrav] @@ -74,7 +71,6 @@ theorem accGravSatisfied {S : (SMNoGrav 1).Sols} (FLTThree : FermatLastTheoremWi exact accGrav_Q_zero hQ exact accGrav_Q_neq_zero hQ FLTThree - end One end SMNoGrav end SM diff --git a/HepLean/AnomalyCancellation/SM/NoGrav/One/LinearParameterization.lean b/HepLean/AnomalyCancellation/SM/NoGrav/One/LinearParameterization.lean index 43ddbd0..126bf37 100644 --- a/HepLean/AnomalyCancellation/SM/NoGrav/One/LinearParameterization.lean +++ b/HepLean/AnomalyCancellation/SM/NoGrav/One/LinearParameterization.lean @@ -183,7 +183,6 @@ lemma grav (S : linearParameters) : end linearParameters - /-- The parameters for solutions to the linear ACCs with the condition that Q and E are non-zero.-/ structure linearParametersQENeqZero where /-- The parameter `x`. -/ @@ -280,7 +279,6 @@ lemma cubic (S : linearParametersQENeqZero) : simp_all exact add_eq_zero_iff_eq_neg - lemma cubic_v_or_w_zero (S : linearParametersQENeqZero) (h : accCube (bijection S).1.val = 0) (FLTThree : FermatLastTheoremWith ℚ 3) : S.v = 0 ∨ S.w = 0 := by @@ -364,7 +362,6 @@ lemma grav_of_cubic (S : linearParametersQENeqZero) (h : accCube (bijection S).1 end linearParametersQENeqZero - end One end SMNoGrav end SM diff --git a/HepLean/AnomalyCancellation/SM/Permutations.lean b/HepLean/AnomalyCancellation/SM/Permutations.lean index 5c6af44..0dda836 100644 --- a/HepLean/AnomalyCancellation/SM/Permutations.lean +++ b/HepLean/AnomalyCancellation/SM/Permutations.lean @@ -33,7 +33,6 @@ variable {n : ℕ} @[simp] instance : Group (PermGroup n) := Pi.group - /-- The image of an element of `permGroup n` under the representation on charges. -/ @[simps!] def chargeMap (f : PermGroup n) : (SMCharges n).Charges →ₗ[ℚ] (SMCharges n).Charges where @@ -66,7 +65,6 @@ lemma repCharges_toSpecies (f : PermGroup n) (S : (SMCharges n).Charges) (j : Fi toSpecies j (repCharges f S) = toSpecies j S ∘ f⁻¹ j := by erw [toSMSpecies_toSpecies_inv] - lemma toSpecies_sum_invariant (m : ℕ) (f : PermGroup n) (S : (SMCharges n).Charges) (j : Fin 5) : ∑ i, ((fun a => a ^ m) ∘ toSpecies j (repCharges f S)) i = ∑ i, ((fun a => a ^ m) ∘ toSpecies j S) i := by @@ -74,20 +72,16 @@ lemma toSpecies_sum_invariant (m : ℕ) (f : PermGroup n) (S : (SMCharges n).Cha exact Fintype.sum_equiv (f⁻¹ j) (fun x => ((fun a => a ^ m) ∘ (toSpecies j) S ∘ ⇑(f⁻¹ j)) x) (fun x => ((fun a => a ^ m) ∘ (toSpecies j) S) x) (congrFun rfl) - - lemma accGrav_invariant (f : PermGroup n) (S : (SMCharges n).Charges) : accGrav (repCharges f S) = accGrav S := accGrav_ext (by simpa using toSpecies_sum_invariant 1 f S) - lemma accSU2_invariant (f : PermGroup n) (S : (SMCharges n).Charges) : accSU2 (repCharges f S) = accSU2 S := accSU2_ext (by simpa using toSpecies_sum_invariant 1 f S) - lemma accSU3_invariant (f : PermGroup n) (S : (SMCharges n).Charges) : accSU3 (repCharges f S) = accSU3 S := accSU3_ext diff --git a/HepLean/AnomalyCancellation/SMNu/Basic.lean b/HepLean/AnomalyCancellation/SMNu/Basic.lean index e4874a1..625adf9 100644 --- a/HepLean/AnomalyCancellation/SMNu/Basic.lean +++ b/HepLean/AnomalyCancellation/SMNu/Basic.lean @@ -14,7 +14,6 @@ import Mathlib.Logic.Equiv.Fin # Anomaly cancellation conditions for n family SM. -/ - universe v u open Nat open BigOperators @@ -83,7 +82,6 @@ abbrev E := @toSpecies n 4 /-- The `N` charges as a map `Fin n → ℚ`. -/ abbrev N := @toSpecies n 5 - end SMνCharges namespace SMνACCs @@ -111,7 +109,6 @@ def accGrav : (SMνCharges n).Charges →ₗ[ℚ] ℚ where -- rw [show Rat.cast a = a from rfl] ring - lemma accGrav_decomp (S : (SMνCharges n).Charges) : accGrav S = 6 * ∑ i, Q S i + 3 * ∑ i, U S i + 3 * ∑ i, D S i + 2 * ∑ i, L S i + ∑ i, E S i + ∑ i, N S i := by @@ -127,7 +124,6 @@ lemma accGrav_ext {S T : (SMνCharges n).Charges} rw [accGrav_decomp, accGrav_decomp] repeat erw [hj] - /-- The `SU(2)` anomaly equation. -/ @[simp] def accSU2 : (SMνCharges n).Charges →ₗ[ℚ] ℚ where @@ -344,7 +340,6 @@ lemma cubeTriLin_decomp (S T R : (SMνCharges n).Charges) : repeat erw [Finset.sum_add_distrib] repeat erw [← Finset.mul_sum] - /-- The cubic ACC. -/ @[simp] def accCube : HomogeneousCubic (SMνCharges n).Charges := cubeTriLin.toCubic diff --git a/HepLean/AnomalyCancellation/SMNu/FamilyMaps.lean b/HepLean/AnomalyCancellation/SMNu/FamilyMaps.lean index cd4f051..801ae0d 100644 --- a/HepLean/AnomalyCancellation/SMNu/FamilyMaps.lean +++ b/HepLean/AnomalyCancellation/SMNu/FamilyMaps.lean @@ -79,7 +79,6 @@ def speciesEmbed (m n : ℕ) : erw [dif_neg hi, dif_neg hi] exact Eq.symm (Rat.mul_zero a) - /-- The embedding of the `m`-family charges onto the `n`-family charges, with all other charges zero. -/ def familyEmbedding (m n : ℕ) : (SMνCharges m).Charges →ₗ[ℚ] (SMνCharges n).Charges := diff --git a/HepLean/AnomalyCancellation/SMNu/NoGrav/Basic.lean b/HepLean/AnomalyCancellation/SMNu/NoGrav/Basic.lean index 54a9737..4f854b2 100644 --- a/HepLean/AnomalyCancellation/SMNu/NoGrav/Basic.lean +++ b/HepLean/AnomalyCancellation/SMNu/NoGrav/Basic.lean @@ -110,7 +110,6 @@ def perm (n : ℕ) : ACCSystemGroupAction (SMNoGrav n) where exact Fin.elim0 i cubicInvariant := accCube_invariant - end SMNoGrav end SMRHN diff --git a/HepLean/AnomalyCancellation/SMNu/Ordinary/Basic.lean b/HepLean/AnomalyCancellation/SMNu/Ordinary/Basic.lean index e27eda9..df41764 100644 --- a/HepLean/AnomalyCancellation/SMNu/Ordinary/Basic.lean +++ b/HepLean/AnomalyCancellation/SMNu/Ordinary/Basic.lean @@ -37,7 +37,6 @@ def SM (n : ℕ) : ACCSystem where namespace SM - variable {n : ℕ} lemma gravSol (S : (SM n).LinSols) : accGrav S.val = 0 := by @@ -119,7 +118,6 @@ def perm (n : ℕ) : ACCSystemGroupAction (SM n) where exact Fin.elim0 i cubicInvariant := accCube_invariant - end SM end SMRHN diff --git a/HepLean/AnomalyCancellation/SMNu/Ordinary/DimSevenPlane.lean b/HepLean/AnomalyCancellation/SMNu/Ordinary/DimSevenPlane.lean index 04d8315..a8201a3 100644 --- a/HepLean/AnomalyCancellation/SMNu/Ordinary/DimSevenPlane.lean +++ b/HepLean/AnomalyCancellation/SMNu/Ordinary/DimSevenPlane.lean @@ -137,7 +137,6 @@ lemma B₀_Bi_cubic {i : Fin 7} (hi : 0 ≠ i) (S : (SM 3).Charges) : simp at hi <;> simp [B₀, B₁, B₂, B₃, B₄, B₅, B₆, Fin.divNat, Fin.modNat, finProdFinEquiv] - lemma B₁_Bi_cubic {i : Fin 7} (hi : 1 ≠ i) (S : (SM 3).Charges) : cubeTriLin (B 1) (B i) S = 0 := by change cubeTriLin B₁ (B i) S = 0 @@ -246,7 +245,6 @@ lemma B₆_B₆_Bi_cubic {i : Fin 7} : fin_cases i <;> simp [B₀, B₁, B₂, B₃, B₄, B₅, B₆, Fin.divNat, Fin.modNat, finProdFinEquiv] - lemma Bi_Bi_Bj_cubic (i j : Fin 7) : cubeTriLin (B i) (B i) (B j) = 0 := by fin_cases i @@ -344,6 +342,5 @@ theorem seven_dim_plane_exists : ∃ (B : Fin 7 → (SM 3).Charges), exact PlaneSeven.basis_linear_independent exact PlaneSeven.B_sum_is_sol - end SM end SMRHN diff --git a/HepLean/AnomalyCancellation/SMNu/Permutations.lean b/HepLean/AnomalyCancellation/SMNu/Permutations.lean index 4306f2a..3a1cb19 100644 --- a/HepLean/AnomalyCancellation/SMNu/Permutations.lean +++ b/HepLean/AnomalyCancellation/SMNu/Permutations.lean @@ -65,7 +65,6 @@ lemma repCharges_toSpecies (f : PermGroup n) (S : (SMνCharges n).Charges) (j : toSpecies j (repCharges f S) = toSpecies j S ∘ f⁻¹ j := by erw [toSMSpecies_toSpecies_inv] - lemma toSpecies_sum_invariant (m : ℕ) (f : PermGroup n) (S : (SMνCharges n).Charges) (j : Fin 6) : ∑ i, ((fun a => a ^ m) ∘ toSpecies j (repCharges f S)) i = ∑ i, ((fun a => a ^ m) ∘ toSpecies j S) i := by @@ -74,19 +73,16 @@ lemma toSpecies_sum_invariant (m : ℕ) (f : PermGroup n) (S : (SMνCharges n).C refine Equiv.Perm.sum_comp _ _ _ ?_ simp only [PermGroup, Fin.isValue, Pi.inv_apply, ne_eq, coe_univ, Set.subset_univ] - lemma accGrav_invariant (f : PermGroup n) (S : (SMνCharges n).Charges) : accGrav (repCharges f S) = accGrav S := accGrav_ext (by simpa using toSpecies_sum_invariant 1 f S) - lemma accSU2_invariant (f : PermGroup n) (S : (SMνCharges n).Charges) : accSU2 (repCharges f S) = accSU2 S := accSU2_ext (by simpa using toSpecies_sum_invariant 1 f S) - lemma accSU3_invariant (f : PermGroup n) (S : (SMνCharges n).Charges) : accSU3 (repCharges f S) = accSU3 S := accSU3_ext @@ -97,7 +93,6 @@ lemma accYY_invariant (f : PermGroup n) (S : (SMνCharges n).Charges) : accYY_ext (by simpa using toSpecies_sum_invariant 1 f S) - lemma accQuad_invariant (f : PermGroup n) (S : (SMνCharges n).Charges) : accQuad (repCharges f S) = accQuad S := accQuad_ext @@ -108,6 +103,4 @@ lemma accCube_invariant (f : PermGroup n) (S : (SMνCharges n).Charges) : accCube_ext (by simpa using toSpecies_sum_invariant 3 f S) - - end SMRHN diff --git a/HepLean/AnomalyCancellation/SMNu/PlusU1/BMinusL.lean b/HepLean/AnomalyCancellation/SMNu/PlusU1/BMinusL.lean index 91a2fa4..6e08870 100644 --- a/HepLean/AnomalyCancellation/SMNu/PlusU1/BMinusL.lean +++ b/HepLean/AnomalyCancellation/SMNu/PlusU1/BMinusL.lean @@ -114,7 +114,6 @@ lemma add_AFL_cube (S : (PlusU1 n).LinSols) (a b : ℚ) : add_zero, BL_val, mul_zero] ring - end BL end PlusU1 end SMRHN diff --git a/HepLean/AnomalyCancellation/SMNu/PlusU1/Basic.lean b/HepLean/AnomalyCancellation/SMNu/PlusU1/Basic.lean index 250a365..5da3f0e 100644 --- a/HepLean/AnomalyCancellation/SMNu/PlusU1/Basic.lean +++ b/HepLean/AnomalyCancellation/SMNu/PlusU1/Basic.lean @@ -37,7 +37,6 @@ def PlusU1 (n : ℕ) : ACCSystem where namespace PlusU1 - variable {n : ℕ} lemma gravSol (S : (PlusU1 n).LinSols) : accGrav S.val = 0 := by diff --git a/HepLean/AnomalyCancellation/SMNu/PlusU1/BoundPlaneDim.lean b/HepLean/AnomalyCancellation/SMNu/PlusU1/BoundPlaneDim.lean index be6b935..ac6aaa0 100644 --- a/HepLean/AnomalyCancellation/SMNu/PlusU1/BoundPlaneDim.lean +++ b/HepLean/AnomalyCancellation/SMNu/PlusU1/BoundPlaneDim.lean @@ -58,7 +58,6 @@ lemma exists_plane_exists_basis {n : ℕ} (hE : ExistsPlane n) : | Sum.inl i => exact h3 i | Sum.inr i => exact h4 i - theorem plane_exists_dim_le_7 {n : ℕ} (hn : ExistsPlane n) : n ≤ 7 := by obtain ⟨B, hB⟩ := exists_plane_exists_basis hn have h1 := LinearIndependent.fintype_card_le_finrank hB @@ -67,6 +66,5 @@ theorem plane_exists_dim_le_7 {n : ℕ} (hn : ExistsPlane n) : n ≤ 7 := by FiniteDimensional.finrank_fin_fun ℚ] at h1 exact Nat.le_of_add_le_add_left h1 - end PlusU1 end SMRHN diff --git a/HepLean/AnomalyCancellation/SMNu/PlusU1/HyperCharge.lean b/HepLean/AnomalyCancellation/SMNu/PlusU1/HyperCharge.lean index fd84c9b..afb8aa9 100644 --- a/HepLean/AnomalyCancellation/SMNu/PlusU1/HyperCharge.lean +++ b/HepLean/AnomalyCancellation/SMNu/PlusU1/HyperCharge.lean @@ -68,7 +68,6 @@ lemma on_quadBiLin_AFL (S : (PlusU1 n).LinSols) : quadBiLin (Y n).val S.val = 0 rw [on_quadBiLin] rw [YYsol S] - lemma add_AFL_quad (S : (PlusU1 n).LinSols) (a b : ℚ) : accQuad (a • S.val + b • (Y n).val) = a ^ 2 * accQuad S.val := by erw [BiLinearSymm.toHomogeneousQuad_add, quadSol (b • (Y n)).1] @@ -144,7 +143,6 @@ lemma add_AF_cube (S : (PlusU1 n).Sols) (a b : ℚ) : def addCube (S : (PlusU1 n).Sols) (a b : ℚ) : (PlusU1 n).Sols := quadToAF (addQuad S.1 a b) (add_AF_cube S a b) - end Y end PlusU1 end SMRHN diff --git a/HepLean/AnomalyCancellation/SMNu/PlusU1/PlaneNonSols.lean b/HepLean/AnomalyCancellation/SMNu/PlusU1/PlaneNonSols.lean index a1d54f8..54c3860 100644 --- a/HepLean/AnomalyCancellation/SMNu/PlusU1/PlaneNonSols.lean +++ b/HepLean/AnomalyCancellation/SMNu/PlusU1/PlaneNonSols.lean @@ -104,7 +104,6 @@ lemma on_accQuad (f : Fin 11 → ℚ) : rw [quadBiLin.map_smul₁, Bi_sum_quad, quadCoeff_eq_bilinear] ring - lemma isSolution_quadCoeff_f_sq_zero (f : Fin 11 → ℚ) (hS : (PlusU1 3).IsSolution (∑ i, f i • B i)) (k : Fin 11) : quadCoeff k * (f k)^2 = 0 := by obtain ⟨S, hS⟩ := hS @@ -231,7 +230,6 @@ lemma isSolution_f_zero (f : Fin 11 → ℚ) (hS : (PlusU1 3).IsSolution (∑ i, exact isSolution_f9 f hS exact isSolution_f10 f hS - lemma isSolution_only_if_zero (f : Fin 11 → ℚ) (hS : (PlusU1 3).IsSolution (∑ i, f i • B i)) : ∑ i, f i • B i = 0 := by rw [isSolution_sum_part f hS] @@ -239,7 +237,6 @@ lemma isSolution_only_if_zero (f : Fin 11 → ℚ) (hS : (PlusU1 3).IsSolution ( rw [isSolution_f9 f hS] simp - theorem basis_linear_independent : LinearIndependent ℚ B := by apply Fintype.linearIndependent_iff.mpr intro f h diff --git a/HepLean/AnomalyCancellation/SMNu/PlusU1/QuadSol.lean b/HepLean/AnomalyCancellation/SMNu/PlusU1/QuadSol.lean index 912464c..e4965c1 100644 --- a/HepLean/AnomalyCancellation/SMNu/PlusU1/QuadSol.lean +++ b/HepLean/AnomalyCancellation/SMNu/PlusU1/QuadSol.lean @@ -74,7 +74,6 @@ lemma genericToQuad_neq_zero (S : (PlusU1 n).QuadSols) (h : α₁ C S.1 ≠ 0) : (α₁ C S.1)⁻¹ • genericToQuad C S.1 = S := by rw [genericToQuad_on_quad, smul_smul, inv_mul_cancel h, one_smul] - /-- The construction of a `QuadSol` from a `LinSols` in the special case when `α₁ C S = 0` and `α₂ S = 0`. -/ def specialToQuad (S : (PlusU1 n).LinSols) (a b : ℚ) (h1 : α₁ C S = 0) diff --git a/HepLean/AnomalyCancellation/SMNu/PlusU1/QuadSolToSol.lean b/HepLean/AnomalyCancellation/SMNu/PlusU1/QuadSolToSol.lean index da6f205..7488e75 100644 --- a/HepLean/AnomalyCancellation/SMNu/PlusU1/QuadSolToSol.lean +++ b/HepLean/AnomalyCancellation/SMNu/PlusU1/QuadSolToSol.lean @@ -78,10 +78,8 @@ lemma special_on_AF (S : (PlusU1 n).Sols) (h1 : α₁ S.1 = 0) : rw [BL.addQuad_zero] simp - end QuadSolToSol - open QuadSolToSol /-- A map from `QuadSols × ℚ × ℚ` to `Sols` taking account of the special and generic cases. We will show that this map is a surjection. -/ diff --git a/HepLean/FeynmanDiagrams/Basic.lean b/HepLean/FeynmanDiagrams/Basic.lean index 33fa443..9c41239 100644 --- a/HepLean/FeynmanDiagrams/Basic.lean +++ b/HepLean/FeynmanDiagrams/Basic.lean @@ -22,7 +22,6 @@ import Mathlib.SetTheory.Cardinal.Basic Feynman diagrams are a graphical representation of the terms in the perturbation expansion of a quantum field theory. - -/ open CategoryTheory @@ -106,7 +105,6 @@ def preimageEdge {𝓔 𝓥 : Type} (v : 𝓔) : map {f g} F := Over.homMk ((P.toEdge ⋙ preimageType' v).map F) (funext <| fun x => congrArg Prod.fst <| congrFun F.w x.1) - /-! ## Finitness of pre-Feynman rules @@ -304,7 +302,6 @@ instance diagramEdgePropDecidable (fun _ => P.preFeynmanRuleDecEq𝓱𝓔) _ _ _)) _ ) _) (P.diagramEdgeProp_iff F f).symm - end PreFeynmanRule /-! @@ -378,7 +375,6 @@ instance CondDecidable [IsFinitePreFeynmanRule P] {𝓔 𝓥 𝓱𝓔 : Type} ( (@diagramEdgePropDecidable P _ _ _ _ _ (Over.mk 𝓱𝓔To𝓔𝓥) _ h 𝓔𝓞) (@diagramVertexPropDecidable P _ _ _ _ _ (Over.mk 𝓱𝓔To𝓔𝓥) _ h 𝓥𝓞) - /-- Making a Feynman diagram from maps of edges, vertices and half-edges. -/ def mk' {𝓔 𝓥 𝓱𝓔 : Type} (𝓔𝓞 : 𝓔 → P.EdgeLabel) (𝓥𝓞 : 𝓥 → P.VertexLabel) (𝓱𝓔To𝓔𝓥 : 𝓱𝓔 → P.HalfEdgeLabel × 𝓔 × 𝓥) @@ -491,7 +487,6 @@ structure Hom (F G : FeynmanDiagram P) where /-- The morphism of half-edge objects. -/ 𝓱𝓔To𝓔𝓥 : (edgeVertexFunc 𝓔𝓞.left 𝓥𝓞.left).obj F.𝓱𝓔To𝓔𝓥 ⟶ G.𝓱𝓔To𝓔𝓥 - namespace Hom variable {F G : FeynmanDiagram P} variable (f : Hom F G) @@ -508,12 +503,10 @@ def 𝓥 : F.𝓥 → G.𝓥 := f.𝓥𝓞.left @[simp] def 𝓱𝓔 : F.𝓱𝓔 → G.𝓱𝓔 := f.𝓱𝓔To𝓔𝓥.left - /-- The morphism `F.𝓱𝓔𝓞 ⟶ G.𝓱𝓔𝓞` induced by a homomorphism of Feynman diagrams. -/ @[simp] def 𝓱𝓔𝓞 : F.𝓱𝓔𝓞 ⟶ G.𝓱𝓔𝓞 := P.toHalfEdge.map f.𝓱𝓔To𝓔𝓥 - /-- The identity morphism for a Feynman diagram. -/ def id (F : FeynmanDiagram P) : Hom F F where 𝓔𝓞 := 𝟙 F.𝓔𝓞 @@ -579,7 +572,6 @@ instance {F G : FeynmanDiagram P} [IsFiniteDiagram F] [IsFiniteDiagram G] [IsFin (𝓔 : F.𝓔 → G.𝓔) (𝓥 : F.𝓥 → G.𝓥) (𝓱𝓔 : F.𝓱𝓔 → G.𝓱𝓔) : Decidable (Cond 𝓔 𝓥 𝓱𝓔) := And.decidable - /-- Making a Feynman diagram from maps of edges, vertices and half-edges. -/ @[simps! 𝓔𝓞_left 𝓥𝓞_left 𝓱𝓔To𝓔𝓥_left] def mk' {F G : FeynmanDiagram P} (𝓔 : F.𝓔 → G.𝓔) (𝓥 : F.𝓥 → G.𝓥) (𝓱𝓔 : F.𝓱𝓔 → G.𝓱𝓔) @@ -667,7 +659,6 @@ We show that the symmetry factor for a finite Feynman diagram is finite. /-- The type of isomorphisms of a Feynman diagram. -/ def SymmetryType : Type := F ≅ F - /-- An equivalence between `SymmetryType` and permutation of edges, vertices and half-edges satisfying `Hom.Cond`. -/ def symmetryTypeEquiv : @@ -728,7 +719,6 @@ instance [IsFiniteDiagram F] : DecidableRel F.AdjRelation := fun _ _ => @And.decidable _ _ (instDecidableEq𝓥OfIsFiniteDiagram _ _) (instDecidableEq𝓥OfIsFiniteDiagram _ _)) _ ) _ - /-- From a Feynman diagram the simple graph showing those vertices which are connected. -/ def toSimpleGraph : SimpleGraph F.𝓥 where Adj := AdjRelation F diff --git a/HepLean/FeynmanDiagrams/Instances/ComplexScalar.lean b/HepLean/FeynmanDiagrams/Instances/ComplexScalar.lean index 6b77219..6c081c2 100644 --- a/HepLean/FeynmanDiagrams/Instances/ComplexScalar.lean +++ b/HepLean/FeynmanDiagrams/Instances/ComplexScalar.lean @@ -7,11 +7,8 @@ import HepLean.FeynmanDiagrams.Basic /-! # Feynman diagrams in a complex scalar field theory - - -/ - namespace PhiFour open CategoryTheory open FeynmanDiagram @@ -65,7 +62,4 @@ instance : IsFinitePreFeynmanRule complexScalarFeynmanRules where match v with | 0 => instDecidableEqFin _ - - - end PhiFour diff --git a/HepLean/FeynmanDiagrams/Instances/Phi4.lean b/HepLean/FeynmanDiagrams/Instances/Phi4.lean index 06413ec..0c780ad 100644 --- a/HepLean/FeynmanDiagrams/Instances/Phi4.lean +++ b/HepLean/FeynmanDiagrams/Instances/Phi4.lean @@ -10,10 +10,8 @@ import HepLean.FeynmanDiagrams.Basic The aim of this file is to start building up the theory of Feynman diagrams in the context of Phi^4 theory. - -/ - namespace PhiFour open CategoryTheory open FeynmanDiagram @@ -45,7 +43,6 @@ instance (a : ℕ) : OfNat phi4PreFeynmanRules.HalfEdgeLabel a where instance (a : ℕ) : OfNat phi4PreFeynmanRules.VertexLabel a where ofNat := (a : Fin _) - instance : IsFinitePreFeynmanRule phi4PreFeynmanRules where edgeLabelDecidable := instDecidableEqFin _ vertexLabelDecidable := instDecidableEqFin _ @@ -92,5 +89,4 @@ lemma figureEight_symmetryFactor : symmetryFactor figureEight = 8 := by decide end Example - end PhiFour diff --git a/HepLean/FeynmanDiagrams/Momentum.lean b/HepLean/FeynmanDiagrams/Momentum.lean index 65cb033..bf57569 100644 --- a/HepLean/FeynmanDiagrams/Momentum.lean +++ b/HepLean/FeynmanDiagrams/Momentum.lean @@ -26,7 +26,6 @@ vector space. This section is non-computable as we depend on the norm on `F.HalfEdgeMomenta`. -/ - namespace FeynmanDiagram open CategoryTheory @@ -78,7 +77,6 @@ def euclidInner : F.HalfEdgeMomenta →ₗ[ℝ] F.HalfEdgeMomenta →ₗ[ℝ] simp only [euclidInnerAux_symm, LinearMapClass.map_smul, smul_eq_mul, RingHom.id_apply, LinearMap.smul_apply] - /-- The type which assocaites to each ege a `1`-dimensional vector space. Corresponding to that spanned by its total outflowing momentum. -/ def EdgeMomenta : Type := F.𝓔 → ℝ @@ -87,7 +85,6 @@ instance : AddCommGroup F.EdgeMomenta := Pi.addCommGroup instance : Module ℝ F.EdgeMomenta := Pi.module _ _ _ - /-- The type which assocaites to each ege a `1`-dimensional vector space. Corresponding to that spanned by its total inflowing momentum. -/ def VertexMomenta : Type := F.𝓥 → ℝ @@ -119,7 +116,6 @@ instance : AddCommGroup F.EdgeVertexMomenta := DirectSum.instAddCommGroup _ instance : Module ℝ F.EdgeVertexMomenta := DirectSum.instModule - /-! ## Linear maps between the vector spaces. @@ -199,7 +195,6 @@ for specific Feynman diagrams. - Complete this section. - -/ /-! @@ -210,7 +205,6 @@ for specific Feynman diagrams. - Complete this section. - -/ end FeynmanDiagram diff --git a/HepLean/FlavorPhysics/CKMMatrix/Basic.lean b/HepLean/FlavorPhysics/CKMMatrix/Basic.lean index 7e6922c..ddcf854 100644 --- a/HepLean/FlavorPhysics/CKMMatrix/Basic.lean +++ b/HepLean/FlavorPhysics/CKMMatrix/Basic.lean @@ -17,12 +17,10 @@ related by phase shifts. The notation `[V]ud` etc can be used for the elements of a CKM matrix, and `[V]ud|us` etc for the ratios of elements. - -/ open Matrix Complex - noncomputable section /-- Given three real numbers `a b c` the complex matrix with `exp (I * a)` etc on the @@ -107,7 +105,6 @@ lemma phaseShiftRelation_trans {U V W : unitaryGroup (Fin 3) ℂ} : rw [phaseShiftMatrix_mul] rw [add_comm k e, add_comm l f, add_comm m g] - lemma phaseShiftRelation_equiv : Equivalence PhaseShiftRelation where refl := phaseShiftRelation_refl symm := phaseShiftRelation_symm @@ -270,7 +267,6 @@ lemma tb (V : CKMMatrix) (a b c d e f : ℝ) : end phaseShiftApply - /-- The aboslute value of the `(i,j)`th element of `V`. -/ @[simp] def VAbs' (V : unitaryGroup (Fin 3) ℂ) (i j : Fin 3) : ℝ := Complex.abs (V i j) @@ -341,11 +337,9 @@ abbrev VtsAbs := VAbs 2 1 @[simp] abbrev VtbAbs := VAbs 2 2 - namespace CKMMatrix open ComplexConjugate - section ratios /-- The ratio of the `ub` and `ud` elements of a CKM matrix. -/ @@ -394,7 +388,6 @@ lemma Rcscb_mul_cb {V : CKMMatrix} (h : [V]cb ≠ 0): [V]cs = Rcscb V * [V]cb := end ratios - end CKMMatrix end diff --git a/HepLean/FlavorPhysics/CKMMatrix/Invariants.lean b/HepLean/FlavorPhysics/CKMMatrix/Invariants.lean index 79a7e70..9b9b024 100644 --- a/HepLean/FlavorPhysics/CKMMatrix/Invariants.lean +++ b/HepLean/FlavorPhysics/CKMMatrix/Invariants.lean @@ -15,17 +15,14 @@ this equivalence. Of note, this file defines the complex jarlskog invariant. - -/ open Matrix Complex open ComplexConjugate open CKMMatrix - noncomputable section namespace Invariant - /-- The complex jarlskog invariant for a CKM matrix. -/ @[simps!] def jarlskogℂCKM (V : CKMMatrix) : ℂ := @@ -62,6 +59,5 @@ standard parameterization. -/ def mulExpδ₁₃ (V : Quotient CKMMatrixSetoid) : ℂ := jarlskogℂ V + VusVubVcdSq V - end Invariant end diff --git a/HepLean/FlavorPhysics/CKMMatrix/PhaseFreedom.lean b/HepLean/FlavorPhysics/CKMMatrix/PhaseFreedom.lean index 974f81d..29c9bbf 100644 --- a/HepLean/FlavorPhysics/CKMMatrix/PhaseFreedom.lean +++ b/HepLean/FlavorPhysics/CKMMatrix/PhaseFreedom.lean @@ -19,11 +19,9 @@ In this file we define two sets of conditions on the CKM matrices and `ubOnePhaseCond` which we show can be satisfied by any CKM matrix up to equivalence as long as the ub element as absolute value 1. - -/ open Matrix Complex - noncomputable section namespace CKMMatrix open ComplexConjugate @@ -260,7 +258,6 @@ lemma fstRowThdColRealCond_holds_up_to_equiv (V : CKMMatrix) : apply shift_cross_product_phase_zero _ _ _ _ _ _ hτ.symm ring - lemma ubOnePhaseCond_hold_up_to_equiv_of_ub_one {V : CKMMatrix} (hb : ¬ ([V]ud ≠ 0 ∨ [V]us ≠ 0)) (hV : FstRowThdColRealCond V) : ∃ (U : CKMMatrix), V ≈ U ∧ ubOnePhaseCond U:= by diff --git a/HepLean/FlavorPhysics/CKMMatrix/Relations.lean b/HepLean/FlavorPhysics/CKMMatrix/Relations.lean index 2dad76b..bbf9dff 100644 --- a/HepLean/FlavorPhysics/CKMMatrix/Relations.lean +++ b/HepLean/FlavorPhysics/CKMMatrix/Relations.lean @@ -16,7 +16,6 @@ matrix. open Matrix Complex - noncomputable section namespace CKMMatrix @@ -121,9 +120,6 @@ lemma VAbsub_neq_zero_sqrt_Vud_Vus_neq_zero {V : Quotient CKMMatrixSetoid} rw [← ud_us_neq_zero_iff_ub_neq_one V] at hV simpa [← Complex.sq_abs] using (normSq_Vud_plus_normSq_Vus_neq_zero_ℝ hV) - - - lemma normSq_Vud_plus_normSq_Vus_neq_zero_ℂ {V : CKMMatrix} (hb : [V]ud ≠ 0 ∨ [V]us ≠ 0) : (normSq [V]ud : ℂ) + normSq [V]us ≠ 0 := by have h1 := normSq_Vud_plus_normSq_Vus_neq_zero_ℝ hb @@ -131,7 +127,6 @@ lemma normSq_Vud_plus_normSq_Vus_neq_zero_ℂ {V : CKMMatrix} (hb : [V]ud ≠ 0 rw [← ofReal_inj] at h1 simp_all - lemma Vabs_sq_add_neq_zero {V : CKMMatrix} (hb : [V]ud ≠ 0 ∨ [V]us ≠ 0) : ((VudAbs ⟦V⟧ : ℂ) * ↑(VudAbs ⟦V⟧) + ↑(VusAbs ⟦V⟧) * ↑(VusAbs ⟦V⟧)) ≠ 0 := by have h1 := normSq_Vud_plus_normSq_Vus_neq_zero_ℂ hb @@ -230,7 +225,6 @@ lemma conj_Vtb_mul_Vus {V : CKMMatrix} {τ : ℝ} simp only [Fin.isValue, neg_mul] ring - lemma cs_of_ud_us_ub_cb_tb {V : CKMMatrix} (h : [V]ud ≠ 0 ∨ [V]us ≠ 0) {τ : ℝ} (hτ : [V]t = cexp (τ * I) • (conj ([V]u) ×₃ conj ([V]c))) : [V]cs = (- conj [V]ub * [V]us * [V]cb + @@ -249,10 +243,8 @@ lemma cd_of_ud_us_ub_cb_tb {V : CKMMatrix} (h : [V]ud ≠ 0 ∨ [V]us ≠ 0) field_simp ring - end rows - section individual lemma VAbs_ge_zero (i j : Fin 3) (V : Quotient CKMMatrixSetoid) : 0 ≤ VAbs i j V := by @@ -270,12 +262,10 @@ lemma VAbs_leq_one (i j : Fin 3) (V : Quotient CKMMatrixSetoid) : VAbs i j V ≤ change VAbs i 2 V ≤ 1 nlinarith - end individual section columns - lemma VAbs_sum_sq_col_eq_one (V : Quotient CKMMatrixSetoid) (i : Fin 3) : (VAbs 0 i V) ^ 2 + (VAbs 1 i V) ^ 2 + (VAbs 2 i V) ^ 2 = 1 := by obtain ⟨V, hV⟩ := Quot.exists_rep V @@ -312,7 +302,6 @@ lemma cb_eq_zero_of_ud_us_zero {V : CKMMatrix} (h : [V]ud = 0 ∧ [V]us = 0) : simp at h1 exact h1.1 - lemma cs_of_ud_us_zero {V : CKMMatrix} (ha : ¬ ([V]ud ≠ 0 ∨ [V]us ≠ 0)) : VcsAbs ⟦V⟧ = √(1 - VcdAbs ⟦V⟧ ^ 2) := by have h1 := snd_row_normalized_abs V @@ -336,8 +325,6 @@ lemma VcbAbs_sq_add_VtbAbs_sq (V : Quotient CKMMatrixSetoid) : VcbAbs V ^ 2 + VtbAbs V ^ 2 = 1 - VubAbs V ^2 := by linear_combination (VAbs_sum_sq_col_eq_one V 2) - - lemma cb_tb_neq_zero_iff_ub_neq_one (V : CKMMatrix) : [V]cb ≠ 0 ∨ [V]tb ≠ 0 ↔ abs [V]ub ≠ 1 := by have h2 := V.thd_col_normalized_abs diff --git a/HepLean/FlavorPhysics/CKMMatrix/Rows.lean b/HepLean/FlavorPhysics/CKMMatrix/Rows.lean index e8d7f5b..39e7c15 100644 --- a/HepLean/FlavorPhysics/CKMMatrix/Rows.lean +++ b/HepLean/FlavorPhysics/CKMMatrix/Rows.lean @@ -14,7 +14,6 @@ proves some properties between them. The first row can be extracted as `[V]u` for a CKM matrix `V`. - -/ open Matrix Complex @@ -24,7 +23,6 @@ noncomputable section namespace CKMMatrix - /-- The `u`th row of the CKM matrix. -/ def uRow (V : CKMMatrix) : Fin 3 → ℂ := ![[V]ud, [V]us, [V]ub] diff --git a/HepLean/FlavorPhysics/CKMMatrix/StandardParameterization/Basic.lean b/HepLean/FlavorPhysics/CKMMatrix/StandardParameterization/Basic.lean index 42ab86b..3beb917 100644 --- a/HepLean/FlavorPhysics/CKMMatrix/StandardParameterization/Basic.lean +++ b/HepLean/FlavorPhysics/CKMMatrix/StandardParameterization/Basic.lean @@ -16,7 +16,6 @@ four real numbers `θ₁₂`, `θ₁₃`, `θ₂₃` and `δ₁₃`. We will show that every CKM matrix can be written within this standard parameterization in the file `FlavorPhysics.CKMMatrix.StandardParameters`. - -/ open Matrix Complex open ComplexConjugate @@ -194,7 +193,5 @@ lemma mulExpδ₁₃_eq (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ℝ) (h1 : 0 ≤ have h1 : cexp (I * δ₁₃) ≠ 0 := exp_ne_zero _ field_simp - - end standParam end diff --git a/HepLean/FlavorPhysics/CKMMatrix/StandardParameterization/StandardParameters.lean b/HepLean/FlavorPhysics/CKMMatrix/StandardParameterization/StandardParameters.lean index 60ce478..ef7c1d3 100644 --- a/HepLean/FlavorPhysics/CKMMatrix/StandardParameterization/StandardParameters.lean +++ b/HepLean/FlavorPhysics/CKMMatrix/StandardParameterization/StandardParameters.lean @@ -18,7 +18,6 @@ These, when used in the standard parameterization return `V` up to equivalence. This leads to the theorem `standParam.exists_for_CKMatrix` which says that up to equivalence every CKM matrix can be written using the standard parameterization. - -/ open Matrix Complex open ComplexConjugate @@ -333,7 +332,6 @@ lemma Vs_zero_iff_cos_sin_zero (V : CKMMatrix) : end VAbs - namespace standParam open Invariant @@ -409,7 +407,6 @@ lemma on_param_cos_θ₁₃_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.c rfl rfl - lemma on_param_cos_θ₁₂_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.cos (θ₁₂ ⟦V⟧) = 0) : standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃ ≈ standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) 0 := by use 0, δ₁₃, δ₁₃, -δ₁₃, 0, - δ₁₃ @@ -434,7 +431,6 @@ lemma on_param_cos_θ₁₂_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.c ring_nf field_simp - lemma on_param_cos_θ₂₃_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.cos (θ₂₃ ⟦V⟧) = 0) : standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃ ≈ standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) 0 := by use 0, δ₁₃, 0, 0, 0, - δ₁₃ @@ -451,7 +447,6 @@ lemma on_param_cos_θ₂₃_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.c ring field_simp - lemma on_param_sin_θ₁₃_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.sin (θ₁₃ ⟦V⟧) = 0) : standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃ ≈ standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) 0 := by use 0, 0, 0, 0, 0, 0 @@ -488,8 +483,6 @@ lemma on_param_sin_θ₁₂_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.s ring_nf field_simp - - lemma on_param_sin_θ₂₃_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.sin (θ₂₃ ⟦V⟧) = 0) : standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃ ≈ standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) 0 := by use 0, 0, δ₁₃, 0, 0, - δ₁₃ @@ -506,9 +499,6 @@ lemma on_param_sin_θ₂₃_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.s ring field_simp - - - lemma eq_standParam_of_fstRowThdColRealCond {V : CKMMatrix} (hb : [V]ud ≠ 0 ∨ [V]us ≠ 0) (hV : FstRowThdColRealCond V) : V = standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) (- arg [V]ub) := by have hb' : VubAbs ⟦V⟧ ≠ 1 := by @@ -565,7 +555,6 @@ lemma eq_standParam_of_fstRowThdColRealCond {V : CKMMatrix} (hb : [V]ud ≠ 0 rw [VcbAbs_eq_S₂₃_mul_C₁₃ ⟦V⟧, S₂₃_eq_ℂsin_θ₂₃ ⟦V⟧, C₁₃] simp - lemma eq_standParam_of_ubOnePhaseCond {V : CKMMatrix} (hV : ubOnePhaseCond V) : V = standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) 0 := by have h1 : VubAbs ⟦V⟧ = 1 := by @@ -610,7 +599,6 @@ lemma eq_standParam_of_ubOnePhaseCond {V : CKMMatrix} (hV : ubOnePhaseCond V) : rw [C₁₃_eq_ℂcos_θ₁₃ ⟦V⟧, C₁₃_of_Vub_eq_one h1, hV.2.2.1] simp - theorem exists_δ₁₃ (V : CKMMatrix) : ∃ (δ₃ : ℝ), V ≈ standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₃ := by obtain ⟨U, hU⟩ := fstRowThdColRealCond_holds_up_to_equiv V @@ -670,7 +658,6 @@ theorem eq_standardParameterization_δ₃ (V : CKMMatrix) : exact on_param_sin_θ₁₃_eq_zero δ₁₃' h exact on_param_sin_θ₂₃_eq_zero δ₁₃' h - theorem exists_for_CKMatrix (V : CKMMatrix) : ∃ (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ℝ), V ≈ standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃ := by use θ₁₂ ⟦V⟧, θ₁₃ ⟦V⟧, θ₂₃ ⟦V⟧, δ₁₃ ⟦V⟧ @@ -678,9 +665,6 @@ theorem exists_for_CKMatrix (V : CKMMatrix) : end standParam - open CKMMatrix - - end diff --git a/HepLean/Mathematics/LinearMaps.lean b/HepLean/Mathematics/LinearMaps.lean index 5fda3b0..d56b6e7 100644 --- a/HepLean/Mathematics/LinearMaps.lean +++ b/HepLean/Mathematics/LinearMaps.lean @@ -40,7 +40,6 @@ lemma map_smul (f : HomogeneousQuadratic V) (a : ℚ) (S : V) : f (a • S) = a end HomogeneousQuadratic - /-- The structure of a symmetric bilinear function. -/ structure BiLinearSymm (V : Type) [AddCommMonoid V] [Module ℚ V] extends V →ₗ[ℚ] V →ₗ[ℚ] ℚ where swap' : ∀ S T, toFun S T = toFun T S @@ -126,7 +125,6 @@ lemma map_sum₂ {n : ℕ} (f : BiLinearSymm V) (S : Fin n → V) (T : V) : intro i rw [swap] - /-- The homogenous quadratic equation obtainable from a bilinear function. -/ @[simps!] def toHomogeneousQuad {V : Type} [AddCommMonoid V] [Module ℚ V] @@ -146,7 +144,6 @@ lemma toHomogeneousQuad_add {V : Type} [AddCommMonoid V] [Module ℚ V] rw [τ.map_add₁, τ.map_add₁, τ.swap T S] ring - end BiLinearSymm /-- The structure of a homogeneous cubic equation. -/ @@ -222,7 +219,6 @@ def mk₃ (f : V × V × V→ ℚ) (map_smul : ∀ a S T L, f (a • S, T, L) = swap₁' := swap₁ swap₂' := swap₂ - lemma swap₁ (f : TriLinearSymm V) (S T L : V) : f S T L = f T S L := f.swap₁' S T L @@ -300,7 +296,6 @@ lemma map_sum₁₂₃ {n1 n2 n3 : ℕ} (f : TriLinearSymm V) (S : Fin n1 → V) intro i rw [map_sum₃] - /-- The homogenous cubic equation obtainable from a symmetric trilinear function. -/ @[simps!] def toCubic {charges : Type} [AddCommMonoid charges] [Module ℚ charges] diff --git a/HepLean/Mathematics/SO3/Basic.lean b/HepLean/Mathematics/SO3/Basic.lean index ff34705..e31b657 100644 --- a/HepLean/Mathematics/SO3/Basic.lean +++ b/HepLean/Mathematics/SO3/Basic.lean @@ -11,7 +11,6 @@ import Mathlib.Analysis.InnerProductSpace.PiL2 /-! # The group SO(3) - -/ namespace GroupTheory @@ -107,7 +106,6 @@ lemma toProd_continuous : Continuous toProd := by refine Continuous.matrix_transpose ?_ exact continuous_iff_le_induced.mpr fun U a => a - /-- The embedding of `SO(3)` into the monoid of matrices times the opposite of the monoid of matrices. -/ lemma toProd_embedding : Embedding toProd where @@ -223,10 +221,7 @@ lemma exists_basis_preserved (A : SO(3)) : use b rw [hb, hv.2] - - end action end SO3 - end GroupTheory diff --git a/HepLean/SpaceTime/Basic.lean b/HepLean/SpaceTime/Basic.lean index fae801a..9e78437 100644 --- a/HepLean/SpaceTime/Basic.lean +++ b/HepLean/SpaceTime/Basic.lean @@ -29,7 +29,6 @@ instance euclideanNormedAddCommGroup : NormedAddCommGroup SpaceTime := Pi.normed instance euclideanNormedSpace : NormedSpace ℝ SpaceTime := Pi.normedSpace - namespace SpaceTime open Manifold diff --git a/HepLean/SpaceTime/LorentzAlgebra/Basic.lean b/HepLean/SpaceTime/LorentzAlgebra/Basic.lean index 8f14a5d..c585a52 100644 --- a/HepLean/SpaceTime/LorentzAlgebra/Basic.lean +++ b/HepLean/SpaceTime/LorentzAlgebra/Basic.lean @@ -17,7 +17,6 @@ We define -/ - namespace SpaceTime open Matrix open TensorProduct @@ -34,7 +33,6 @@ lemma transpose_eta (A : lorentzAlgebra) : A.1ᵀ * η = - η * A.1 := by erw [mem_skewAdjointMatricesLieSubalgebra] at h1 simpa [LieAlgebra.Orthogonal.so', IsSkewAdjoint, IsAdjointPair] using h1 - lemma mem_of_transpose_eta_eq_eta_mul_self {A : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ℝ} (h : Aᵀ * η = - η * A) : A ∈ lorentzAlgebra := by erw [mem_skewAdjointMatricesLieSubalgebra] @@ -58,7 +56,6 @@ lemma mem_iff' (A : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ℝ) : rw [minkowskiMatrix.sq] all_goals noncomm_ring - lemma diag_comp (Λ : lorentzAlgebra) (μ : Fin 1 ⊕ Fin 3) : Λ.1 μ μ = 0 := by have h := congrArg (fun M ↦ M μ μ) $ mem_iff.mp Λ.2 simp only [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, mul_diagonal, @@ -67,22 +64,18 @@ lemma diag_comp (Λ : lorentzAlgebra) (μ : Fin 1 ⊕ Fin 3) : Λ.1 μ μ = 0 := simpa using h simpa using h - - lemma time_comps (Λ : lorentzAlgebra) (i : Fin 3) : Λ.1 (Sum.inr i) (Sum.inl 0) = Λ.1 (Sum.inl 0) (Sum.inr i) := by simpa only [Fin.isValue, minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, mul_diagonal, transpose_apply, Sum.elim_inr, mul_neg, mul_one, diagonal_neg, diagonal_mul, Sum.elim_inl, neg_mul, one_mul, neg_inj] using congrArg (fun M ↦ M (Sum.inl 0) (Sum.inr i)) $ mem_iff.mp Λ.2 - lemma space_comps (Λ : lorentzAlgebra) (i j : Fin 3) : Λ.1 (Sum.inr i) (Sum.inr j) = - Λ.1 (Sum.inr j) (Sum.inr i) := by simpa only [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, diagonal_neg, diagonal_mul, Sum.elim_inr, neg_neg, one_mul, mul_diagonal, transpose_apply, mul_neg, mul_one] using (congrArg (fun M ↦ M (Sum.inr i) (Sum.inr j)) $ mem_iff.mp Λ.2).symm - end lorentzAlgebra @[simps!] @@ -104,5 +97,4 @@ instance spaceTimeAsLieModule : LieModule ℝ lorentzAlgebra (LorentzVector 3) w simp [Bracket.bracket] rw [mulVec_smul] - end SpaceTime diff --git a/HepLean/SpaceTime/LorentzGroup/Basic.lean b/HepLean/SpaceTime/LorentzGroup/Basic.lean index 5c737b5..61cb6c0 100644 --- a/HepLean/SpaceTime/LorentzGroup/Basic.lean +++ b/HepLean/SpaceTime/LorentzGroup/Basic.lean @@ -44,7 +44,6 @@ def LorentzGroup (d : ℕ) : Set (Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ {Λ : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ | ∀ (x y : LorentzVector d), ⟪Λ *ᵥ x, Λ *ᵥ y⟫ₘ = ⟪x, y⟫ₘ} - namespace LorentzGroup /-- Notation for the Lorentz group. -/ scoped[LorentzGroup] notation (name := lorentzGroup_notation) "𝓛" => LorentzGroup diff --git a/HepLean/SpaceTime/LorentzGroup/Boosts.lean b/HepLean/SpaceTime/LorentzGroup/Boosts.lean index 38e46e6..1618fb0 100644 --- a/HepLean/SpaceTime/LorentzGroup/Boosts.lean +++ b/HepLean/SpaceTime/LorentzGroup/Boosts.lean @@ -140,7 +140,6 @@ lemma toMatrix_continuous (u : FuturePointing d) : Continuous (toMatrix u) := by exact FuturePointing.metric_continuous _ exact fun x => FuturePointing.one_add_metric_non_zero u x - lemma toMatrix_in_lorentzGroup (u v : FuturePointing d) : (toMatrix u v) ∈ LorentzGroup d:= by intro x y rw [toMatrix_mulVec, toMatrix_mulVec, genBoost, genBoostAux₁, genBoostAux₂] @@ -161,7 +160,6 @@ lemma toLorentz_continuous (u : FuturePointing d) : Continuous (toLorentz u) := refine Continuous.subtype_mk ?_ (fun x => toMatrix_in_lorentzGroup u x) exact toMatrix_continuous u - lemma toLorentz_joined_to_1 (u v : FuturePointing d) : Joined 1 (toLorentz u v) := by obtain ⟨f, _⟩ := FuturePointing.isPathConnected.joinedIn u trivial v trivial use ContinuousMap.comp ⟨toLorentz u, toLorentz_continuous u⟩ f @@ -180,8 +178,6 @@ lemma isProper (u v : FuturePointing d) : IsProper (toLorentz u v) := end genBoost - end LorentzGroup - end diff --git a/HepLean/SpaceTime/LorentzGroup/Orthochronous.lean b/HepLean/SpaceTime/LorentzGroup/Orthochronous.lean index ea7c655..6ef2e6b 100644 --- a/HepLean/SpaceTime/LorentzGroup/Orthochronous.lean +++ b/HepLean/SpaceTime/LorentzGroup/Orthochronous.lean @@ -17,10 +17,8 @@ matrices. -/ - noncomputable section - open Matrix open Complex open ComplexConjugate @@ -66,7 +64,6 @@ lemma not_orthochronous_iff_le_zero : rw [IsOrthochronous_iff_ge_one] linarith - /-- The continuous map taking a Lorentz transformation to its `0 0` element. -/ def timeCompCont : C(LorentzGroup d, ℝ) := ⟨fun Λ => timeComp Λ , Continuous.matrix_elem (continuous_iff_le_induced.mpr fun _ a => a) (Sum.inl 0) (Sum.inl 0)⟩ diff --git a/HepLean/SpaceTime/LorentzGroup/Proper.lean b/HepLean/SpaceTime/LorentzGroup/Proper.lean index 2457446..e7bc25d 100644 --- a/HepLean/SpaceTime/LorentzGroup/Proper.lean +++ b/HepLean/SpaceTime/LorentzGroup/Proper.lean @@ -11,10 +11,8 @@ We define the give a series of lemmas related to the determinant of the lorentz -/ - noncomputable section - open Matrix open Complex open ComplexConjugate @@ -31,7 +29,6 @@ lemma det_eq_one_or_neg_one (Λ : 𝓛 d) : Λ.1.det = 1 ∨ Λ.1.det = -1 := by simp [det_mul, det_dual] at h1 exact mul_self_eq_one_iff.mp h1 - local notation "ℤ₂" => Multiplicative (ZMod 2) instance : TopologicalSpace ℤ₂ := instTopologicalSpaceFin @@ -76,7 +73,6 @@ lemma detContinuous_eq_iff_det_eq (Λ Λ' : LorentzGroup d) : · intro h simp [detContinuous, h] - /-- The representation taking a lorentz matrix to its determinant. -/ @[simps!] def detRep : 𝓛 d →* ℤ₂ where diff --git a/HepLean/SpaceTime/LorentzGroup/Rotations.lean b/HepLean/SpaceTime/LorentzGroup/Rotations.lean index 5172b3f..cdc9558 100644 --- a/HepLean/SpaceTime/LorentzGroup/Rotations.lean +++ b/HepLean/SpaceTime/LorentzGroup/Rotations.lean @@ -54,8 +54,6 @@ def SO3ToLorentz : SO(3) →* LorentzGroup 3 where apply Subtype.eq simp [Matrix.fromBlocks_multiply] - end LorentzGroup - end diff --git a/HepLean/SpaceTime/LorentzVector/AsSelfAdjointMatrix.lean b/HepLean/SpaceTime/LorentzVector/AsSelfAdjointMatrix.lean index 6fbdcb5..b8399a8 100644 --- a/HepLean/SpaceTime/LorentzVector/AsSelfAdjointMatrix.lean +++ b/HepLean/SpaceTime/LorentzVector/AsSelfAdjointMatrix.lean @@ -52,7 +52,6 @@ noncomputable def fromSelfAdjointMatrix' (x : selfAdjoint (Matrix (Fin 2) (Fin 2 | Sum.inr 1 => (x.1 1 0).im | Sum.inr 2 => 1/2 * (x.1 0 0 - x.1 1 1).re - /-- The linear equivalence between the vector-space `spaceTime` and self-adjoint 2×2-complex matrices. -/ noncomputable def toSelfAdjointMatrix : diff --git a/HepLean/SpaceTime/LorentzVector/Basic.lean b/HepLean/SpaceTime/LorentzVector/Basic.lean index c3d2a5a..060e348 100644 --- a/HepLean/SpaceTime/LorentzVector/Basic.lean +++ b/HepLean/SpaceTime/LorentzVector/Basic.lean @@ -77,7 +77,6 @@ lemma timeVec_space : (@timeVec d).space = 0 := by lemma timeVec_time: (@timeVec d).time = 1 := by simp only [time, Fin.isValue, stdBasis_apply, ↓reduceIte] - /-! # Reflection of space diff --git a/HepLean/SpaceTime/LorentzVector/NormOne.lean b/HepLean/SpaceTime/LorentzVector/NormOne.lean index 2866976..905e448 100644 --- a/HepLean/SpaceTime/LorentzVector/NormOne.lean +++ b/HepLean/SpaceTime/LorentzVector/NormOne.lean @@ -63,7 +63,6 @@ lemma time_nonpos_iff : v.1.time ≤ 0 ↔ v.1.time ≤ - 1 := by · intro h linarith - lemma time_nonneg_iff : 0 ≤ v.1.time ↔ 1 ≤ v.1.time := by apply Iff.intro · intro h @@ -167,14 +166,12 @@ lemma metric_reflect_mem_mem (h : v ∈ FuturePointing d) (hw : w ∈ FuturePoin apply le_trans (neg_le_abs _ : _ ≤ |⟪(v.1).space, (w.1).space⟫_ℝ|) ?_ exact abs_real_inner_le_norm (v.1).space (w.1).space - lemma metric_reflect_not_mem_not_mem (h : v ∉ FuturePointing d) (hw : w ∉ FuturePointing d) : 0 ≤ ⟪v.1, w.1.spaceReflection⟫ₘ := by have h1 := metric_reflect_mem_mem ((not_mem_iff_neg v).mp h) ((not_mem_iff_neg w).mp hw) apply le_of_le_of_eq h1 ?_ simp [neg] - lemma metric_reflect_mem_not_mem (h : v ∈ FuturePointing d) (hw : w ∉ FuturePointing d) : ⟪v.1, w.1.spaceReflection⟫ₘ ≤ 0 := by rw [show (0 : ℝ) = - 0 from zero_eq_neg.mpr rfl, le_neg] @@ -209,7 +206,6 @@ noncomputable def timeVecNormOneFuture : FuturePointing d := ⟨⟨timeVec, by rw [NormOneLorentzVector.mem_iff, on_timeVec]⟩, by rw [mem_iff, timeVec_time]; exact Real.zero_lt_one⟩ - /-- A continuous path from `timeVecNormOneFuture` to any other. -/ noncomputable def pathFromTime (u : FuturePointing d) : Path timeVecNormOneFuture u where toFun t := ⟨ @@ -266,9 +262,6 @@ noncomputable def pathFromTime (u : FuturePointing d) : Path timeVecNormOneFutur simp only [Set.Icc.coe_one, one_pow, space, one_mul, Fin.isValue] exact rfl - - - lemma isPathConnected : IsPathConnected (@Set.univ (FuturePointing d)) := by use timeVecNormOneFuture apply And.intro trivial ?_ @@ -276,7 +269,6 @@ lemma isPathConnected : IsPathConnected (@Set.univ (FuturePointing d)) := by use pathFromTime y exact fun _ => a - lemma metric_continuous (u : LorentzVector d) : Continuous (fun (a : FuturePointing d) => ⟪u, a.1.1⟫ₘ) := by simp only [minkowskiMetric.eq_time_minus_inner_prod] @@ -289,8 +281,6 @@ lemma metric_continuous (u : LorentzVector d) : (Continuous.comp' (Pi.continuous_precomp Sum.inr) (Continuous.comp' continuous_subtype_val continuous_subtype_val)) - end FuturePointing - end NormOneLorentzVector diff --git a/HepLean/SpaceTime/MinkowskiMetric.lean b/HepLean/SpaceTime/MinkowskiMetric.lean index 884945e..4160fed 100644 --- a/HepLean/SpaceTime/MinkowskiMetric.lean +++ b/HepLean/SpaceTime/MinkowskiMetric.lean @@ -16,7 +16,6 @@ of Lorentz vectors in d dimensions. -/ - open Matrix /-! @@ -55,7 +54,6 @@ lemma sq : @minkowskiMatrix d * minkowskiMatrix = 1 := by lemma eq_transpose : minkowskiMatrixᵀ = @minkowskiMatrix d := by simp only [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal, diagonal_transpose] - @[simp] lemma det_eq_neg_one_pow_d : (@minkowskiMatrix d).det = (- 1) ^ d := by simp [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal] @@ -71,10 +69,8 @@ lemma as_block : @minkowskiMatrix d = ( rw [← diagonal_neg] rfl - end minkowskiMatrix - /-! # The definition of the Minkowski Metric @@ -133,7 +129,6 @@ lemma as_sum : Function.comp_apply, minkowskiMatrix] ring - /-- The Minkowski metric expressed as a sum for a single vector. -/ lemma as_sum_self : ⟪v, v⟫ₘ = v.time ^ 2 - ‖v.space‖ ^ 2 := by rw [← real_inner_self_eq_norm_sq, PiLp.inner_apply, as_sum] @@ -167,7 +162,6 @@ lemma right_spaceReflection : ⟪v, w.spaceReflection⟫ₘ = v.time * w.time + simp only [time, Fin.isValue, space, inner_neg_right, PiLp.inner_apply, Function.comp_apply, RCLike.inner_apply, conj_trivial, sub_neg_eq_add] - lemma self_spaceReflection_eq_zero_iff : ⟪v, v.spaceReflection⟫ₘ = 0 ↔ v = 0 := by refine Iff.intro (fun h => ?_) (fun h => ?_) · rw [right_spaceReflection] at h @@ -195,7 +189,6 @@ lemma nondegenerate : (∀ w, ⟪w, v⟫ₘ = 0) ↔ v = 0 := by · exact (self_spaceReflection_eq_zero_iff _ ).mp ((symm _ _).trans $ h v.spaceReflection) · simp [h] - /-! # Inequalitites involving the Minkowski metric @@ -215,7 +208,6 @@ lemma ge_sub_norm : v.time * w.time - ‖v.space‖ * ‖w.space‖ ≤ ⟪v, w rw [sub_le_sub_iff_left] exact norm_inner_le_norm v.space w.space - /-! # The Minkowski metric and matrices @@ -303,7 +295,6 @@ lemma matrix_eq_id_iff : Λ = 1 ↔ ∀ w v, ⟪v, Λ *ᵥ w⟫ₘ = ⟪v, w⟫ rw [matrix_eq_iff_eq_forall] simp - /-! # The Minkowski metric and the standard basis diff --git a/HepLean/SpaceTime/SL2C/Basic.lean b/HepLean/SpaceTime/SL2C/Basic.lean index d24152c..e58d09b 100644 --- a/HepLean/SpaceTime/SL2C/Basic.lean +++ b/HepLean/SpaceTime/SL2C/Basic.lean @@ -130,8 +130,6 @@ Complete this section. -/ - - end end SL2C diff --git a/HepLean/StandardModel/HiggsBoson/Basic.lean b/HepLean/StandardModel/HiggsBoson/Basic.lean index 62a19ec..70f15e4 100644 --- a/HepLean/StandardModel/HiggsBoson/Basic.lean +++ b/HepLean/StandardModel/HiggsBoson/Basic.lean @@ -98,7 +98,6 @@ lemma apply_im_smooth (φ : HiggsField) (i : Fin 2): /-- Given two `higgsField`, the map `spaceTime → ℂ` obtained by taking their inner product. -/ def innerProd (φ1 φ2 : HiggsField) : SpaceTime → ℂ := fun x => ⟪φ1 x, φ2 x⟫_ℂ - /-- Given a `higgsField`, the map `spaceTime → ℝ` obtained by taking the square norm of the higgs vector. -/ @[simp] @@ -154,7 +153,6 @@ lemma potential_apply (φ : HiggsField) (μSq lambda : ℝ) (x : SpaceTime) : simp [HiggsVec.potential, toHiggsVec_norm] ring - /-- A higgs field is constant if it is equal for all `x` `y` in `spaceTime`. -/ def IsConst (Φ : HiggsField) : Prop := ∀ x y, Φ x = Φ y diff --git a/HepLean/StandardModel/HiggsBoson/TargetSpace.lean b/HepLean/StandardModel/HiggsBoson/TargetSpace.lean index 350d2b5..b494d1c 100644 --- a/HepLean/StandardModel/HiggsBoson/TargetSpace.lean +++ b/HepLean/StandardModel/HiggsBoson/TargetSpace.lean @@ -39,7 +39,6 @@ open ComplexConjugate /-- The complex vector space in which the Higgs field takes values. -/ abbrev HiggsVec := EuclideanSpace ℂ (Fin 2) - /-- The continuous linear map from the vector space `higgsVec` to `(Fin 2 → ℂ)` achieved by casting vectors. -/ def higgsVecToFin2ℂ : HiggsVec →L[ℝ] (Fin 2 → ℂ) where @@ -144,7 +143,6 @@ lemma potential_snd_term_nonneg (φ : HiggsVec) : simp_all only [ge_iff_le, norm_nonneg, pow_nonneg, and_true] exact le_of_lt hLam - lemma zero_le_potential_discrim (φ : HiggsVec) : 0 ≤ discrim (λ) (- μSq ) (- potential μSq (λ) φ) := by have h1 := potential_as_quad μSq (λ) φ diff --git a/HepLean/StandardModel/Representations.lean b/HepLean/StandardModel/Representations.lean index 4500ee5..4fe843c 100644 --- a/HepLean/StandardModel/Representations.lean +++ b/HepLean/StandardModel/Representations.lean @@ -53,5 +53,4 @@ lemma repU1_fundamentalSU2_commute (u1 : unitary ℂ) (g : specialUnitaryGroup ( apply Subtype.ext simp - end StandardModel