refactor: Remove double empty lines
This commit is contained in:
parent
ae18a2196d
commit
f03d063c86
60 changed files with 0 additions and 232 deletions
|
@ -18,8 +18,6 @@ The plane spanned by Y₃, B₃ and third orthogonal point.
|
|||
|
||||
-/
|
||||
|
||||
|
||||
|
||||
universe v u
|
||||
|
||||
namespace MSSMACC
|
||||
|
@ -93,7 +91,6 @@ lemma planeY₃B₃_val_eq' (R : MSSMACC.AnomalyFreePerp) (a b c : ℚ) (hR' : R
|
|||
rw [ha, hb, hc]
|
||||
simp
|
||||
|
||||
|
||||
lemma planeY₃B₃_quad (R : MSSMACC.AnomalyFreePerp) (a b c : ℚ) :
|
||||
accQuad (planeY₃B₃ R a b c).val = c * (2 * a * quadBiLin Y₃.val R.val
|
||||
+ 2 * b * quadBiLin B₃.val R.val + c * quadBiLin R.val R.val) := by
|
||||
|
@ -184,7 +181,6 @@ def lineCube (R : MSSMACC.AnomalyFreePerp) (a₁ a₂ a₃ : ℚ) :
|
|||
(3 * a₃ * cubeTriLin R.val R.val Y₃.val - a₁ * cubeTriLin R.val R.val R.val)
|
||||
(3 * (a₁ * cubeTriLin R.val R.val B₃.val - a₂ * cubeTriLin R.val R.val Y₃.val))
|
||||
|
||||
|
||||
lemma lineCube_smul (R : MSSMACC.AnomalyFreePerp) (a b c d : ℚ) :
|
||||
lineCube R (d * a) (d * b) (d * c) = d • lineCube R a b c := by
|
||||
apply ACCSystemLinear.LinSols.ext
|
||||
|
@ -241,5 +237,4 @@ lemma α₂_proj_zero (T : MSSMACC.Sols) (h1 : α₃ (proj T.1.1) = 0) :
|
|||
|
||||
end proj
|
||||
|
||||
|
||||
end MSSMACC
|
||||
|
|
|
@ -18,7 +18,6 @@ To define `toSols` we define a series of other maps from various subtypes of
|
|||
`MSSMACC.AnomalyFreePerp × ℚ × ℚ × ℚ` to `MSSMACC.Sols`. And show that these maps form a
|
||||
surjection on certain subtypes of `MSSMACC.Sols`.
|
||||
|
||||
|
||||
# References
|
||||
|
||||
The main reference for the material in this file is:
|
||||
|
@ -78,7 +77,6 @@ lemma linEqPropSol_iff_proj_linEqProp (R : MSSMACC.Sols) :
|
|||
rw [h.2.2]
|
||||
simp
|
||||
|
||||
|
||||
/-- A condition which is satisfied if the plane spanned by `R`, `Y₃` and `B₃` lies
|
||||
entirely in the quadratic surface. -/
|
||||
def InQuadProp (R : MSSMACC.AnomalyFreePerp) : Prop :=
|
||||
|
@ -237,7 +235,6 @@ not surjective. -/
|
|||
def toSolNS : MSSMACC.AnomalyFreePerp × ℚ × ℚ × ℚ → MSSMACC.Sols := fun (R, a, _ , _) =>
|
||||
a • AnomalyFreeMk'' (toSolNSQuad R) (toSolNSQuad_cube R)
|
||||
|
||||
|
||||
/-- A map from `Sols` to `MSSMACC.AnomalyFreePerp × ℚ × ℚ × ℚ` which on elements of
|
||||
`notInLineEqSol` will produce a right inverse to `toSolNS`. -/
|
||||
def toSolNSProj (T : MSSMACC.Sols) : MSSMACC.AnomalyFreePerp × ℚ × ℚ × ℚ :=
|
||||
|
@ -457,7 +454,6 @@ theorem toSol_surjective : Function.Surjective toSol := by
|
|||
simp at h₃
|
||||
exact toSol_inQuadCube ⟨T, And.intro h₁ (And.intro h₂ h₃)⟩
|
||||
|
||||
|
||||
end AnomalyFreePerp
|
||||
|
||||
end MSSMACC
|
||||
|
|
|
@ -16,7 +16,6 @@ We define the anomaly cancellation conditions for a pure U(1) gauge theory with
|
|||
universe v u
|
||||
open Nat
|
||||
|
||||
|
||||
open Finset
|
||||
|
||||
namespace PureU1
|
||||
|
@ -35,7 +34,6 @@ def accGrav (n : ℕ) : ((PureU1Charges n).Charges →ₗ[ℚ] ℚ) where
|
|||
simp [HSMul.hSMul, SMul.smul]
|
||||
rw [← Finset.mul_sum]
|
||||
|
||||
|
||||
/-- The symmetric trilinear form used to define the cubic anomaly. -/
|
||||
@[simps!]
|
||||
def accCubeTriLinSymm {n : ℕ} : TriLinearSymm (PureU1Charges n).Charges := TriLinearSymm.mk₃
|
||||
|
@ -162,7 +160,6 @@ lemma sum_of_charges {n : ℕ} (f : Fin k → (PureU1 n).Charges) (j : Fin n) :
|
|||
erw [← hlt]
|
||||
simp
|
||||
|
||||
|
||||
lemma sum_of_anomaly_free_linear {n : ℕ} (f : Fin k → (PureU1 n).LinSols) (j : Fin n) :
|
||||
(∑ i : Fin k, (f i)).1 j = (∑ i : Fin k, (f i).1 j) := by
|
||||
induction k
|
||||
|
|
|
@ -75,7 +75,6 @@ def asLinSols (j : Fin n) : (PureU1 n.succ).LinSols :=
|
|||
intro hk
|
||||
simp at hk⟩
|
||||
|
||||
|
||||
lemma sum_of_vectors {n : ℕ} (f : Fin k → (PureU1 n).LinSols) (j : Fin n) :
|
||||
(∑ i : Fin k, (f i)).1 j = (∑ i : Fin k, (f i).1 j) :=
|
||||
sum_of_anomaly_free_linear (fun i => f i) j
|
||||
|
@ -134,5 +133,4 @@ lemma finrank_AnomalyFreeLinear :
|
|||
|
||||
end BasisLinear
|
||||
|
||||
|
||||
end PureU1
|
||||
|
|
|
@ -120,7 +120,6 @@ lemma boundary_accGrav' (k : Fin n) : accGrav n.succ S =
|
|||
intro i
|
||||
simp
|
||||
|
||||
|
||||
lemma boundary_accGrav'' (k : Fin n) (hk : Boundary S k) :
|
||||
accGrav n.succ S = (2 * ↑↑k + 1 - ↑n) * S (0 : Fin n.succ) := by
|
||||
rw [boundary_accGrav' k]
|
||||
|
@ -165,7 +164,6 @@ lemma not_hasBoundary_grav (hnot : ¬ (HasBoundary S)) :
|
|||
accGrav n.succ S = n.succ * S (0 : Fin n.succ) := by
|
||||
simp [accGrav, ← not_hasBoundry_zero hS hnot]
|
||||
|
||||
|
||||
lemma AFL_hasBoundary (h : A.val (0 : Fin n.succ) ≠ 0) : HasBoundary A.val := by
|
||||
by_contra hn
|
||||
have h0 := not_hasBoundary_grav hA hn
|
||||
|
@ -253,12 +251,10 @@ lemma AFL_even_above (A : (PureU1 (2 * n.succ)).LinSols) (h : ConstAbsSorted A.v
|
|||
rfl
|
||||
exact AFL_even_above' h hA i
|
||||
|
||||
|
||||
end charges
|
||||
|
||||
end ConstAbsSorted
|
||||
|
||||
|
||||
namespace ConstAbs
|
||||
|
||||
theorem boundary_value_odd (S : (PureU1 (2 * n + 1)).LinSols) (hs : ConstAbs S.val) :
|
||||
|
@ -266,7 +262,6 @@ theorem boundary_value_odd (S : (PureU1 (2 * n + 1)).LinSols) (hs : ConstAbs S.v
|
|||
have hS := And.intro (constAbs_sort hs) (sort_sorted S.val)
|
||||
sortAFL_zero S (ConstAbsSorted.AFL_odd (sortAFL S) hS)
|
||||
|
||||
|
||||
theorem boundary_value_even (S : (PureU1 (2 * n.succ)).LinSols) (hs : ConstAbs S.val) :
|
||||
VectorLikeEven S.val := by
|
||||
have hS := And.intro (constAbs_sort hs) (sort_sorted S.val)
|
||||
|
|
|
@ -190,7 +190,6 @@ lemma basis!_on_other {k : Fin n} {j : Fin (2 * n.succ)} (h1 : j ≠ δ!₁ k)
|
|||
simp [basis!AsCharges]
|
||||
simp_all only [ne_eq, ↓reduceIte]
|
||||
|
||||
|
||||
lemma basis!_on_δ!₁_other {k j : Fin n} (h : k ≠ j) :
|
||||
basis!AsCharges k (δ!₁ j) = 0 := by
|
||||
simp [basis!AsCharges]
|
||||
|
@ -310,7 +309,6 @@ lemma basis!_accCube (j : Fin n) :
|
|||
simp [basis!_δ!₂_eq_minus_δ!₁]
|
||||
ring
|
||||
|
||||
|
||||
/-- The first part of the basis as `LinSols`. -/
|
||||
@[simps!]
|
||||
def basis (j : Fin n.succ) : (PureU1 (2 * n.succ)).LinSols :=
|
||||
|
@ -587,7 +585,6 @@ theorem basis!_linear_independent : LinearIndependent ℚ (@basis! n) := by
|
|||
rw [P!'_val] at h1
|
||||
exact P!_zero f h1
|
||||
|
||||
|
||||
theorem basisa_linear_independent : LinearIndependent ℚ (@basisa n) := by
|
||||
apply Fintype.linearIndependent_iff.mpr
|
||||
intro f h
|
||||
|
@ -663,7 +660,6 @@ lemma Pa_eq (g g' : Fin n.succ → ℚ) (f f' : Fin n → ℚ) :
|
|||
rw [← join_ext]
|
||||
exact Pa'_eq _ _
|
||||
|
||||
|
||||
lemma basisa_card : Fintype.card ((Fin n.succ) ⊕ (Fin n)) =
|
||||
FiniteDimensional.finrank ℚ (PureU1 (2 * n.succ)).LinSols := by
|
||||
erw [BasisLinear.finrank_AnomalyFreeLinear]
|
||||
|
@ -675,7 +671,6 @@ noncomputable def basisaAsBasis :
|
|||
Basis (Fin (succ n) ⊕ Fin n) ℚ (PureU1 (2 * succ n)).LinSols :=
|
||||
basisOfLinearIndependentOfCardEqFinrank (@basisa_linear_independent n) basisa_card
|
||||
|
||||
|
||||
lemma span_basis (S : (PureU1 (2 * n.succ)).LinSols) :
|
||||
∃ (g : Fin n.succ → ℚ) (f : Fin n → ℚ), S.val = P g + P! f := by
|
||||
have h := (mem_span_range_iff_exists_fun ℚ).mp (Basis.mem_span basisaAsBasis S)
|
||||
|
|
|
@ -134,7 +134,6 @@ theorem generic_case {S : (PureU1 (2 * n.succ)).Sols} (h : GenericCase S) :
|
|||
simp at h
|
||||
exact h
|
||||
|
||||
|
||||
lemma special_case_lineInCubic {S : (PureU1 (2 * n.succ)).Sols}
|
||||
(h : SpecialCase S) : LineInCubic S.1.1 := by
|
||||
intro g f hS a b
|
||||
|
@ -152,7 +151,6 @@ lemma special_case_lineInCubic {S : (PureU1 (2 * n.succ)).Sols}
|
|||
erw [h]
|
||||
simp
|
||||
|
||||
|
||||
lemma special_case_lineInCubic_perm {S : (PureU1 (2 * n.succ)).Sols}
|
||||
(h : ∀ (M : (FamilyPermutations (2 * n.succ)).group),
|
||||
SpecialCase ((FamilyPermutations (2 * n.succ)).solAction.toFun S M)) :
|
||||
|
@ -160,7 +158,6 @@ lemma special_case_lineInCubic_perm {S : (PureU1 (2 * n.succ)).Sols}
|
|||
intro M
|
||||
exact special_case_lineInCubic (h M)
|
||||
|
||||
|
||||
theorem special_case {S : (PureU1 (2 * n.succ.succ)).Sols}
|
||||
(h : ∀ (M : (FamilyPermutations (2 * n.succ.succ)).group),
|
||||
SpecialCase ((FamilyPermutations (2 * n.succ.succ)).solAction.toFun S M)) :
|
||||
|
|
|
@ -26,7 +26,6 @@ We will show that `n ≥ 4` the `line in plane` condition on solutions implies t
|
|||
|
||||
-/
|
||||
|
||||
|
||||
namespace PureU1
|
||||
|
||||
open BigOperators
|
||||
|
@ -52,7 +51,6 @@ lemma lineInPlaneCond_perm {S : (PureU1 (n)).LinSols} (hS : LineInPlaneCond S)
|
|||
all_goals simp_all only [ne_eq, Equiv.invFun_as_coe, EmbeddingLike.apply_eq_iff_eq,
|
||||
not_false_eq_true]
|
||||
|
||||
|
||||
lemma lineInPlaneCond_eq_last' {S : (PureU1 (n.succ.succ)).LinSols} (hS : LineInPlaneCond S)
|
||||
(h : ¬ (S.val ((Fin.last n).castSucc))^2 = (S.val ((Fin.last n).succ))^2 ) :
|
||||
(2 - n) * S.val (Fin.last (n + 1)) =
|
||||
|
@ -157,7 +155,6 @@ lemma linesInPlane_four (S : (PureU1 4).Sols) (hS : LineInPlaneCond S.1.1) :
|
|||
simp at h6
|
||||
simp_all
|
||||
|
||||
|
||||
lemma linesInPlane_eq_sq_four {S : (PureU1 4).Sols}
|
||||
(hS : LineInPlaneCond S.1.1) : ∀ (i j : Fin 4) (_ : i ≠ j),
|
||||
ConstAbsProp (S.val i, S.val j) := by
|
||||
|
@ -168,7 +165,6 @@ lemma linesInPlane_eq_sq_four {S : (PureU1 4).Sols}
|
|||
(lineInPlaneCond_perm hS M)
|
||||
exact linesInPlane_four S' hS'
|
||||
|
||||
|
||||
lemma linesInPlane_constAbs_four (S : (PureU1 4).Sols)
|
||||
(hS : LineInPlaneCond S.1.1) : ConstAbs S.val := by
|
||||
intro i j
|
||||
|
@ -183,5 +179,4 @@ theorem linesInPlane_constAbs_AF (S : (PureU1 (n.succ.succ.succ.succ)).Sols)
|
|||
exact linesInPlane_constAbs_four S hS
|
||||
exact linesInPlane_constAbs hS
|
||||
|
||||
|
||||
end PureU1
|
||||
|
|
|
@ -50,7 +50,6 @@ def solOfLinear (S : (PureU1 3).LinSols)
|
|||
⟨⟨S, by intro i; simp at i; exact Fin.elim0 i⟩,
|
||||
(cube_for_linSol S).mp hS⟩
|
||||
|
||||
|
||||
theorem solOfLinear_surjects (S : (PureU1 3).Sols) :
|
||||
∃ (T : (PureU1 3).LinSols) (hT : T.val (0 : Fin 3) = 0 ∨ T.val (1 : Fin 3) = 0
|
||||
∨ T.val (2 : Fin 3) = 0), solOfLinear T hT = S := by
|
||||
|
|
|
@ -23,7 +23,6 @@ namespace PureU1
|
|||
|
||||
variable {n : ℕ}
|
||||
|
||||
|
||||
namespace VectorLikeOddPlane
|
||||
|
||||
lemma split_odd! (n : ℕ) : (1 + n) + n = 2 * n +1 := by
|
||||
|
@ -484,7 +483,6 @@ lemma P_P_P!_accCube (g : Fin n → ℚ) (j : Fin n) :
|
|||
simp only [mul_zero, add_zero]
|
||||
simp
|
||||
|
||||
|
||||
lemma P_zero (f : Fin n → ℚ) (h : P f = 0) : ∀ i, f i = 0 := by
|
||||
intro i
|
||||
erw [← P_δ₁ f]
|
||||
|
@ -572,7 +570,6 @@ theorem basis!_linear_independent : LinearIndependent ℚ (@basis! n) := by
|
|||
rw [P!'_val] at h1
|
||||
exact P!_zero f h1
|
||||
|
||||
|
||||
theorem basisa_linear_independent : LinearIndependent ℚ (@basisa n.succ) := by
|
||||
apply Fintype.linearIndependent_iff.mpr
|
||||
intro f h
|
||||
|
@ -648,8 +645,6 @@ lemma Pa_eq (g g' : Fin n.succ → ℚ) (f f' : Fin n.succ → ℚ) :
|
|||
rw [← join_ext]
|
||||
exact Pa'_eq _ _
|
||||
|
||||
|
||||
|
||||
lemma basisa_card : Fintype.card ((Fin n.succ) ⊕ (Fin n.succ)) =
|
||||
FiniteDimensional.finrank ℚ (PureU1 (2 * n.succ + 1)).LinSols := by
|
||||
erw [BasisLinear.finrank_AnomalyFreeLinear]
|
||||
|
@ -706,8 +701,6 @@ lemma span_basis_swap! {S : (PureU1 (2 * n.succ + 1)).LinSols} (j : Fin n.succ)
|
|||
apply swap!_as_add at hS
|
||||
exact hS
|
||||
|
||||
|
||||
end VectorLikeOddPlane
|
||||
|
||||
|
||||
end PureU1
|
||||
|
|
|
@ -54,7 +54,6 @@ lemma lineInCubic_expand {S : (PureU1 (2 * n + 1)).LinSols} (h : LineInCubic S)
|
|||
rw [← h1]
|
||||
ring
|
||||
|
||||
|
||||
lemma line_in_cubic_P_P_P! {S : (PureU1 (2 * n + 1)).LinSols} (h : LineInCubic S) :
|
||||
∀ (g : Fin n → ℚ) (f : Fin n → ℚ) (_ : S.val = P g + P! f),
|
||||
accCubeTriLinSymm (P g) (P g) (P! f) = 0 := by
|
||||
|
@ -62,8 +61,6 @@ lemma line_in_cubic_P_P_P! {S : (PureU1 (2 * n + 1)).LinSols} (h : LineInCubic S
|
|||
linear_combination 2 / 3 * (lineInCubic_expand h g f hS 1 1 ) -
|
||||
(lineInCubic_expand h g f hS 1 2 ) / 6
|
||||
|
||||
|
||||
|
||||
/-- We say a `LinSol` satisfies `lineInCubicPerm` if all its permutations satisfy `lineInCubic`. -/
|
||||
def LineInCubicPerm (S : (PureU1 (2 * n + 1)).LinSols) : Prop :=
|
||||
∀ (M : (FamilyPermutations (2 * n + 1)).group ),
|
||||
|
@ -86,7 +83,6 @@ lemma lineInCubicPerm_permute {S : (PureU1 (2 * n + 1)).LinSols}
|
|||
rw [ht]
|
||||
exact hS (M * M')
|
||||
|
||||
|
||||
lemma lineInCubicPerm_swap {S : (PureU1 (2 * n.succ + 1)).LinSols}
|
||||
(LIC : LineInCubicPerm S) :
|
||||
∀ (j : Fin n.succ) (g f : Fin n.succ → ℚ) (_ : S.val = Pa g f) ,
|
||||
|
|
|
@ -133,7 +133,6 @@ theorem generic_case {S : (PureU1 (2 * n.succ + 1)).Sols} (h : GenericCase S) :
|
|||
simp at h
|
||||
exact h
|
||||
|
||||
|
||||
lemma special_case_lineInCubic {S : (PureU1 (2 * n.succ + 1)).Sols}
|
||||
(h : SpecialCase S) :
|
||||
LineInCubic S.1.1 := by
|
||||
|
|
|
@ -96,7 +96,6 @@ def FamilyPermutations (n : ℕ) : ACCSystemGroupAction (PureU1 n) where
|
|||
exact Fin.elim0 i
|
||||
cubicInvariant := accCube_invariant
|
||||
|
||||
|
||||
lemma FamilyPermutations_charges_apply (S : (PureU1 n).Charges)
|
||||
(i : Fin n) (f : (FamilyPermutations n).group) :
|
||||
((FamilyPermutations n).rep f S) i = S (f.invFun i) := by
|
||||
|
@ -107,7 +106,6 @@ lemma FamilyPermutations_anomalyFreeLinear_apply (S : (PureU1 n).LinSols)
|
|||
((FamilyPermutations n).linSolRep f S).val i = S.val (f.invFun i) := by
|
||||
rfl
|
||||
|
||||
|
||||
/-- The permutation which swaps i and j. TODO: Replace with: `Equiv.swap`. -/
|
||||
def pairSwap {n : ℕ} (i j : Fin n) : (FamilyPermutations n).group where
|
||||
toFun s :=
|
||||
|
@ -247,7 +245,6 @@ lemma permThreeInj_fst_apply :
|
|||
⟨i, permThreeInj_fst hij hjk hik⟩ = 0 := by
|
||||
exact (Equiv.symm_apply_eq (Function.Embedding.toEquivRange (permThreeInj hij hjk hik))).mpr rfl
|
||||
|
||||
|
||||
lemma permThreeInj_snd : j ∈ Set.range ⇑(permThreeInj hij hjk hik) := by
|
||||
simp only [Set.mem_range]
|
||||
use 1
|
||||
|
@ -338,5 +335,4 @@ lemma Prop_three (P : ℚ × ℚ × ℚ → Prop) {S : (PureU1 n).LinSols}
|
|||
erw [permThree_fst,permThree_snd, permThree_thd] at h1
|
||||
exact h1
|
||||
|
||||
|
||||
end PureU1
|
||||
|
|
|
@ -67,7 +67,6 @@ def sortAFL {n : ℕ} (S : (PureU1 n).LinSols) : (PureU1 n).LinSols :=
|
|||
lemma sortAFL_val {n : ℕ} (S : (PureU1 n).LinSols) : (sortAFL S).val = sort S.val := by
|
||||
rfl
|
||||
|
||||
|
||||
lemma sortAFL_zero {n : ℕ} (S : (PureU1 n).LinSols) (hS : sortAFL S = 0) : S = 0 := by
|
||||
apply ACCSystemLinear.LinSols.ext
|
||||
have h1 : sort S.val = 0 := by
|
||||
|
|
|
@ -30,7 +30,6 @@ variable {n : ℕ}
|
|||
-/
|
||||
lemma split_equal (n : ℕ) : n + n = 2 * n := (Nat.two_mul n).symm
|
||||
|
||||
|
||||
lemma split_odd (n : ℕ) : n + 1 + n = 2 * n + 1 := by omega
|
||||
|
||||
/-- A charge configuration for n even is vector like if when sorted the `i`th element
|
||||
|
@ -40,5 +39,4 @@ def VectorLikeEven (S : (PureU1 (2 * n)).Charges) : Prop :=
|
|||
∀ (i : Fin n), (sort S) (Fin.cast (split_equal n) (Fin.castAdd n i))
|
||||
= - (sort S) (Fin.cast (split_equal n) (Fin.natAdd n i))
|
||||
|
||||
|
||||
end PureU1
|
||||
|
|
|
@ -319,5 +319,4 @@ lemma accCube_ext {S T : (SMCharges n).Charges}
|
|||
rfl
|
||||
repeat rw [h1]
|
||||
|
||||
|
||||
end SMACCs
|
||||
|
|
|
@ -24,7 +24,6 @@ open SMCharges
|
|||
open SMACCs
|
||||
open BigOperators
|
||||
|
||||
|
||||
lemma E_zero_iff_Q_zero {S : (SMNoGrav 1).Sols} : Q S.val (0 : Fin 1) = 0 ↔
|
||||
E S.val (0 : Fin 1) = 0 := by
|
||||
let S' := linearParameters.bijection.symm S.1.1
|
||||
|
@ -38,8 +37,6 @@ lemma E_zero_iff_Q_zero {S : (SMNoGrav 1).Sols} : Q S.val (0 : Fin 1) = 0 ↔
|
|||
intro hE
|
||||
exact S'.cubic_zero_E'_zero hC hE
|
||||
|
||||
|
||||
|
||||
lemma accGrav_Q_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) = 0) :
|
||||
accGrav S.val = 0 := by
|
||||
rw [accGrav]
|
||||
|
@ -74,7 +71,6 @@ theorem accGravSatisfied {S : (SMNoGrav 1).Sols} (FLTThree : FermatLastTheoremWi
|
|||
exact accGrav_Q_zero hQ
|
||||
exact accGrav_Q_neq_zero hQ FLTThree
|
||||
|
||||
|
||||
end One
|
||||
end SMNoGrav
|
||||
end SM
|
||||
|
|
|
@ -183,7 +183,6 @@ lemma grav (S : linearParameters) :
|
|||
|
||||
end linearParameters
|
||||
|
||||
|
||||
/-- The parameters for solutions to the linear ACCs with the condition that Q and E are non-zero.-/
|
||||
structure linearParametersQENeqZero where
|
||||
/-- The parameter `x`. -/
|
||||
|
@ -280,7 +279,6 @@ lemma cubic (S : linearParametersQENeqZero) :
|
|||
simp_all
|
||||
exact add_eq_zero_iff_eq_neg
|
||||
|
||||
|
||||
lemma cubic_v_or_w_zero (S : linearParametersQENeqZero) (h : accCube (bijection S).1.val = 0)
|
||||
(FLTThree : FermatLastTheoremWith ℚ 3) :
|
||||
S.v = 0 ∨ S.w = 0 := by
|
||||
|
@ -364,7 +362,6 @@ lemma grav_of_cubic (S : linearParametersQENeqZero) (h : accCube (bijection S).1
|
|||
|
||||
end linearParametersQENeqZero
|
||||
|
||||
|
||||
end One
|
||||
end SMNoGrav
|
||||
end SM
|
||||
|
|
|
@ -33,7 +33,6 @@ variable {n : ℕ}
|
|||
@[simp]
|
||||
instance : Group (PermGroup n) := Pi.group
|
||||
|
||||
|
||||
/-- The image of an element of `permGroup n` under the representation on charges. -/
|
||||
@[simps!]
|
||||
def chargeMap (f : PermGroup n) : (SMCharges n).Charges →ₗ[ℚ] (SMCharges n).Charges where
|
||||
|
@ -66,7 +65,6 @@ lemma repCharges_toSpecies (f : PermGroup n) (S : (SMCharges n).Charges) (j : Fi
|
|||
toSpecies j (repCharges f S) = toSpecies j S ∘ f⁻¹ j := by
|
||||
erw [toSMSpecies_toSpecies_inv]
|
||||
|
||||
|
||||
lemma toSpecies_sum_invariant (m : ℕ) (f : PermGroup n) (S : (SMCharges n).Charges) (j : Fin 5) :
|
||||
∑ i, ((fun a => a ^ m) ∘ toSpecies j (repCharges f S)) i =
|
||||
∑ i, ((fun a => a ^ m) ∘ toSpecies j S) i := by
|
||||
|
@ -74,20 +72,16 @@ lemma toSpecies_sum_invariant (m : ℕ) (f : PermGroup n) (S : (SMCharges n).Cha
|
|||
exact Fintype.sum_equiv (f⁻¹ j) (fun x => ((fun a => a ^ m) ∘ (toSpecies j) S ∘ ⇑(f⁻¹ j)) x)
|
||||
(fun x => ((fun a => a ^ m) ∘ (toSpecies j) S) x) (congrFun rfl)
|
||||
|
||||
|
||||
|
||||
lemma accGrav_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
|
||||
accGrav (repCharges f S) = accGrav S :=
|
||||
accGrav_ext
|
||||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||||
|
||||
|
||||
lemma accSU2_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
|
||||
accSU2 (repCharges f S) = accSU2 S :=
|
||||
accSU2_ext
|
||||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||||
|
||||
|
||||
lemma accSU3_invariant (f : PermGroup n) (S : (SMCharges n).Charges) :
|
||||
accSU3 (repCharges f S) = accSU3 S :=
|
||||
accSU3_ext
|
||||
|
|
|
@ -14,7 +14,6 @@ import Mathlib.Logic.Equiv.Fin
|
|||
# Anomaly cancellation conditions for n family SM.
|
||||
-/
|
||||
|
||||
|
||||
universe v u
|
||||
open Nat
|
||||
open BigOperators
|
||||
|
@ -83,7 +82,6 @@ abbrev E := @toSpecies n 4
|
|||
/-- The `N` charges as a map `Fin n → ℚ`. -/
|
||||
abbrev N := @toSpecies n 5
|
||||
|
||||
|
||||
end SMνCharges
|
||||
|
||||
namespace SMνACCs
|
||||
|
@ -111,7 +109,6 @@ def accGrav : (SMνCharges n).Charges →ₗ[ℚ] ℚ where
|
|||
-- rw [show Rat.cast a = a from rfl]
|
||||
ring
|
||||
|
||||
|
||||
lemma accGrav_decomp (S : (SMνCharges n).Charges) :
|
||||
accGrav S = 6 * ∑ i, Q S i + 3 * ∑ i, U S i + 3 * ∑ i, D S i + 2 * ∑ i, L S i + ∑ i, E S i +
|
||||
∑ i, N S i := by
|
||||
|
@ -127,7 +124,6 @@ lemma accGrav_ext {S T : (SMνCharges n).Charges}
|
|||
rw [accGrav_decomp, accGrav_decomp]
|
||||
repeat erw [hj]
|
||||
|
||||
|
||||
/-- The `SU(2)` anomaly equation. -/
|
||||
@[simp]
|
||||
def accSU2 : (SMνCharges n).Charges →ₗ[ℚ] ℚ where
|
||||
|
@ -344,7 +340,6 @@ lemma cubeTriLin_decomp (S T R : (SMνCharges n).Charges) :
|
|||
repeat erw [Finset.sum_add_distrib]
|
||||
repeat erw [← Finset.mul_sum]
|
||||
|
||||
|
||||
/-- The cubic ACC. -/
|
||||
@[simp]
|
||||
def accCube : HomogeneousCubic (SMνCharges n).Charges := cubeTriLin.toCubic
|
||||
|
|
|
@ -79,7 +79,6 @@ def speciesEmbed (m n : ℕ) :
|
|||
erw [dif_neg hi, dif_neg hi]
|
||||
exact Eq.symm (Rat.mul_zero a)
|
||||
|
||||
|
||||
/-- The embedding of the `m`-family charges onto the `n`-family charges, with all
|
||||
other charges zero. -/
|
||||
def familyEmbedding (m n : ℕ) : (SMνCharges m).Charges →ₗ[ℚ] (SMνCharges n).Charges :=
|
||||
|
|
|
@ -110,7 +110,6 @@ def perm (n : ℕ) : ACCSystemGroupAction (SMNoGrav n) where
|
|||
exact Fin.elim0 i
|
||||
cubicInvariant := accCube_invariant
|
||||
|
||||
|
||||
end SMNoGrav
|
||||
|
||||
end SMRHN
|
||||
|
|
|
@ -37,7 +37,6 @@ def SM (n : ℕ) : ACCSystem where
|
|||
|
||||
namespace SM
|
||||
|
||||
|
||||
variable {n : ℕ}
|
||||
|
||||
lemma gravSol (S : (SM n).LinSols) : accGrav S.val = 0 := by
|
||||
|
@ -119,7 +118,6 @@ def perm (n : ℕ) : ACCSystemGroupAction (SM n) where
|
|||
exact Fin.elim0 i
|
||||
cubicInvariant := accCube_invariant
|
||||
|
||||
|
||||
end SM
|
||||
|
||||
end SMRHN
|
||||
|
|
|
@ -137,7 +137,6 @@ lemma B₀_Bi_cubic {i : Fin 7} (hi : 0 ≠ i) (S : (SM 3).Charges) :
|
|||
simp at hi <;>
|
||||
simp [B₀, B₁, B₂, B₃, B₄, B₅, B₆, Fin.divNat, Fin.modNat, finProdFinEquiv]
|
||||
|
||||
|
||||
lemma B₁_Bi_cubic {i : Fin 7} (hi : 1 ≠ i) (S : (SM 3).Charges) :
|
||||
cubeTriLin (B 1) (B i) S = 0 := by
|
||||
change cubeTriLin B₁ (B i) S = 0
|
||||
|
@ -246,7 +245,6 @@ lemma B₆_B₆_Bi_cubic {i : Fin 7} :
|
|||
fin_cases i <;>
|
||||
simp [B₀, B₁, B₂, B₃, B₄, B₅, B₆, Fin.divNat, Fin.modNat, finProdFinEquiv]
|
||||
|
||||
|
||||
lemma Bi_Bi_Bj_cubic (i j : Fin 7) :
|
||||
cubeTriLin (B i) (B i) (B j) = 0 := by
|
||||
fin_cases i
|
||||
|
@ -344,6 +342,5 @@ theorem seven_dim_plane_exists : ∃ (B : Fin 7 → (SM 3).Charges),
|
|||
exact PlaneSeven.basis_linear_independent
|
||||
exact PlaneSeven.B_sum_is_sol
|
||||
|
||||
|
||||
end SM
|
||||
end SMRHN
|
||||
|
|
|
@ -65,7 +65,6 @@ lemma repCharges_toSpecies (f : PermGroup n) (S : (SMνCharges n).Charges) (j :
|
|||
toSpecies j (repCharges f S) = toSpecies j S ∘ f⁻¹ j := by
|
||||
erw [toSMSpecies_toSpecies_inv]
|
||||
|
||||
|
||||
lemma toSpecies_sum_invariant (m : ℕ) (f : PermGroup n) (S : (SMνCharges n).Charges) (j : Fin 6) :
|
||||
∑ i, ((fun a => a ^ m) ∘ toSpecies j (repCharges f S)) i =
|
||||
∑ i, ((fun a => a ^ m) ∘ toSpecies j S) i := by
|
||||
|
@ -74,19 +73,16 @@ lemma toSpecies_sum_invariant (m : ℕ) (f : PermGroup n) (S : (SMνCharges n).C
|
|||
refine Equiv.Perm.sum_comp _ _ _ ?_
|
||||
simp only [PermGroup, Fin.isValue, Pi.inv_apply, ne_eq, coe_univ, Set.subset_univ]
|
||||
|
||||
|
||||
lemma accGrav_invariant (f : PermGroup n) (S : (SMνCharges n).Charges) :
|
||||
accGrav (repCharges f S) = accGrav S :=
|
||||
accGrav_ext
|
||||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||||
|
||||
|
||||
lemma accSU2_invariant (f : PermGroup n) (S : (SMνCharges n).Charges) :
|
||||
accSU2 (repCharges f S) = accSU2 S :=
|
||||
accSU2_ext
|
||||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||||
|
||||
|
||||
lemma accSU3_invariant (f : PermGroup n) (S : (SMνCharges n).Charges) :
|
||||
accSU3 (repCharges f S) = accSU3 S :=
|
||||
accSU3_ext
|
||||
|
@ -97,7 +93,6 @@ lemma accYY_invariant (f : PermGroup n) (S : (SMνCharges n).Charges) :
|
|||
accYY_ext
|
||||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||||
|
||||
|
||||
lemma accQuad_invariant (f : PermGroup n) (S : (SMνCharges n).Charges) :
|
||||
accQuad (repCharges f S) = accQuad S :=
|
||||
accQuad_ext
|
||||
|
@ -108,6 +103,4 @@ lemma accCube_invariant (f : PermGroup n) (S : (SMνCharges n).Charges) :
|
|||
accCube_ext
|
||||
(by simpa using toSpecies_sum_invariant 3 f S)
|
||||
|
||||
|
||||
|
||||
end SMRHN
|
||||
|
|
|
@ -114,7 +114,6 @@ lemma add_AFL_cube (S : (PlusU1 n).LinSols) (a b : ℚ) :
|
|||
add_zero, BL_val, mul_zero]
|
||||
ring
|
||||
|
||||
|
||||
end BL
|
||||
end PlusU1
|
||||
end SMRHN
|
||||
|
|
|
@ -37,7 +37,6 @@ def PlusU1 (n : ℕ) : ACCSystem where
|
|||
|
||||
namespace PlusU1
|
||||
|
||||
|
||||
variable {n : ℕ}
|
||||
|
||||
lemma gravSol (S : (PlusU1 n).LinSols) : accGrav S.val = 0 := by
|
||||
|
|
|
@ -58,7 +58,6 @@ lemma exists_plane_exists_basis {n : ℕ} (hE : ExistsPlane n) :
|
|||
| Sum.inl i => exact h3 i
|
||||
| Sum.inr i => exact h4 i
|
||||
|
||||
|
||||
theorem plane_exists_dim_le_7 {n : ℕ} (hn : ExistsPlane n) : n ≤ 7 := by
|
||||
obtain ⟨B, hB⟩ := exists_plane_exists_basis hn
|
||||
have h1 := LinearIndependent.fintype_card_le_finrank hB
|
||||
|
@ -67,6 +66,5 @@ theorem plane_exists_dim_le_7 {n : ℕ} (hn : ExistsPlane n) : n ≤ 7 := by
|
|||
FiniteDimensional.finrank_fin_fun ℚ] at h1
|
||||
exact Nat.le_of_add_le_add_left h1
|
||||
|
||||
|
||||
end PlusU1
|
||||
end SMRHN
|
||||
|
|
|
@ -68,7 +68,6 @@ lemma on_quadBiLin_AFL (S : (PlusU1 n).LinSols) : quadBiLin (Y n).val S.val = 0
|
|||
rw [on_quadBiLin]
|
||||
rw [YYsol S]
|
||||
|
||||
|
||||
lemma add_AFL_quad (S : (PlusU1 n).LinSols) (a b : ℚ) :
|
||||
accQuad (a • S.val + b • (Y n).val) = a ^ 2 * accQuad S.val := by
|
||||
erw [BiLinearSymm.toHomogeneousQuad_add, quadSol (b • (Y n)).1]
|
||||
|
@ -144,7 +143,6 @@ lemma add_AF_cube (S : (PlusU1 n).Sols) (a b : ℚ) :
|
|||
def addCube (S : (PlusU1 n).Sols) (a b : ℚ) : (PlusU1 n).Sols :=
|
||||
quadToAF (addQuad S.1 a b) (add_AF_cube S a b)
|
||||
|
||||
|
||||
end Y
|
||||
end PlusU1
|
||||
end SMRHN
|
||||
|
|
|
@ -104,7 +104,6 @@ lemma on_accQuad (f : Fin 11 → ℚ) :
|
|||
rw [quadBiLin.map_smul₁, Bi_sum_quad, quadCoeff_eq_bilinear]
|
||||
ring
|
||||
|
||||
|
||||
lemma isSolution_quadCoeff_f_sq_zero (f : Fin 11 → ℚ) (hS : (PlusU1 3).IsSolution (∑ i, f i • B i))
|
||||
(k : Fin 11) : quadCoeff k * (f k)^2 = 0 := by
|
||||
obtain ⟨S, hS⟩ := hS
|
||||
|
@ -231,7 +230,6 @@ lemma isSolution_f_zero (f : Fin 11 → ℚ) (hS : (PlusU1 3).IsSolution (∑ i,
|
|||
exact isSolution_f9 f hS
|
||||
exact isSolution_f10 f hS
|
||||
|
||||
|
||||
lemma isSolution_only_if_zero (f : Fin 11 → ℚ) (hS : (PlusU1 3).IsSolution (∑ i, f i • B i)) :
|
||||
∑ i, f i • B i = 0 := by
|
||||
rw [isSolution_sum_part f hS]
|
||||
|
@ -239,7 +237,6 @@ lemma isSolution_only_if_zero (f : Fin 11 → ℚ) (hS : (PlusU1 3).IsSolution (
|
|||
rw [isSolution_f9 f hS]
|
||||
simp
|
||||
|
||||
|
||||
theorem basis_linear_independent : LinearIndependent ℚ B := by
|
||||
apply Fintype.linearIndependent_iff.mpr
|
||||
intro f h
|
||||
|
|
|
@ -74,7 +74,6 @@ lemma genericToQuad_neq_zero (S : (PlusU1 n).QuadSols) (h : α₁ C S.1 ≠ 0) :
|
|||
(α₁ C S.1)⁻¹ • genericToQuad C S.1 = S := by
|
||||
rw [genericToQuad_on_quad, smul_smul, inv_mul_cancel h, one_smul]
|
||||
|
||||
|
||||
/-- The construction of a `QuadSol` from a `LinSols` in the special case when `α₁ C S = 0` and
|
||||
`α₂ S = 0`. -/
|
||||
def specialToQuad (S : (PlusU1 n).LinSols) (a b : ℚ) (h1 : α₁ C S = 0)
|
||||
|
|
|
@ -78,10 +78,8 @@ lemma special_on_AF (S : (PlusU1 n).Sols) (h1 : α₁ S.1 = 0) :
|
|||
rw [BL.addQuad_zero]
|
||||
simp
|
||||
|
||||
|
||||
end QuadSolToSol
|
||||
|
||||
|
||||
open QuadSolToSol
|
||||
/-- A map from `QuadSols × ℚ × ℚ` to `Sols` taking account of the special and generic cases.
|
||||
We will show that this map is a surjection. -/
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue