refactor: Remove double empty lines
This commit is contained in:
parent
ae18a2196d
commit
f03d063c86
60 changed files with 0 additions and 232 deletions
|
@ -18,8 +18,6 @@ The plane spanned by Y₃, B₃ and third orthogonal point.
|
|||
|
||||
-/
|
||||
|
||||
|
||||
|
||||
universe v u
|
||||
|
||||
namespace MSSMACC
|
||||
|
@ -93,7 +91,6 @@ lemma planeY₃B₃_val_eq' (R : MSSMACC.AnomalyFreePerp) (a b c : ℚ) (hR' : R
|
|||
rw [ha, hb, hc]
|
||||
simp
|
||||
|
||||
|
||||
lemma planeY₃B₃_quad (R : MSSMACC.AnomalyFreePerp) (a b c : ℚ) :
|
||||
accQuad (planeY₃B₃ R a b c).val = c * (2 * a * quadBiLin Y₃.val R.val
|
||||
+ 2 * b * quadBiLin B₃.val R.val + c * quadBiLin R.val R.val) := by
|
||||
|
@ -184,7 +181,6 @@ def lineCube (R : MSSMACC.AnomalyFreePerp) (a₁ a₂ a₃ : ℚ) :
|
|||
(3 * a₃ * cubeTriLin R.val R.val Y₃.val - a₁ * cubeTriLin R.val R.val R.val)
|
||||
(3 * (a₁ * cubeTriLin R.val R.val B₃.val - a₂ * cubeTriLin R.val R.val Y₃.val))
|
||||
|
||||
|
||||
lemma lineCube_smul (R : MSSMACC.AnomalyFreePerp) (a b c d : ℚ) :
|
||||
lineCube R (d * a) (d * b) (d * c) = d • lineCube R a b c := by
|
||||
apply ACCSystemLinear.LinSols.ext
|
||||
|
@ -241,5 +237,4 @@ lemma α₂_proj_zero (T : MSSMACC.Sols) (h1 : α₃ (proj T.1.1) = 0) :
|
|||
|
||||
end proj
|
||||
|
||||
|
||||
end MSSMACC
|
||||
|
|
|
@ -18,7 +18,6 @@ To define `toSols` we define a series of other maps from various subtypes of
|
|||
`MSSMACC.AnomalyFreePerp × ℚ × ℚ × ℚ` to `MSSMACC.Sols`. And show that these maps form a
|
||||
surjection on certain subtypes of `MSSMACC.Sols`.
|
||||
|
||||
|
||||
# References
|
||||
|
||||
The main reference for the material in this file is:
|
||||
|
@ -78,7 +77,6 @@ lemma linEqPropSol_iff_proj_linEqProp (R : MSSMACC.Sols) :
|
|||
rw [h.2.2]
|
||||
simp
|
||||
|
||||
|
||||
/-- A condition which is satisfied if the plane spanned by `R`, `Y₃` and `B₃` lies
|
||||
entirely in the quadratic surface. -/
|
||||
def InQuadProp (R : MSSMACC.AnomalyFreePerp) : Prop :=
|
||||
|
@ -237,7 +235,6 @@ not surjective. -/
|
|||
def toSolNS : MSSMACC.AnomalyFreePerp × ℚ × ℚ × ℚ → MSSMACC.Sols := fun (R, a, _ , _) =>
|
||||
a • AnomalyFreeMk'' (toSolNSQuad R) (toSolNSQuad_cube R)
|
||||
|
||||
|
||||
/-- A map from `Sols` to `MSSMACC.AnomalyFreePerp × ℚ × ℚ × ℚ` which on elements of
|
||||
`notInLineEqSol` will produce a right inverse to `toSolNS`. -/
|
||||
def toSolNSProj (T : MSSMACC.Sols) : MSSMACC.AnomalyFreePerp × ℚ × ℚ × ℚ :=
|
||||
|
@ -457,7 +454,6 @@ theorem toSol_surjective : Function.Surjective toSol := by
|
|||
simp at h₃
|
||||
exact toSol_inQuadCube ⟨T, And.intro h₁ (And.intro h₂ h₃)⟩
|
||||
|
||||
|
||||
end AnomalyFreePerp
|
||||
|
||||
end MSSMACC
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue