refactor: Remove double empty lines
This commit is contained in:
parent
ae18a2196d
commit
f03d063c86
60 changed files with 0 additions and 232 deletions
|
@ -18,7 +18,6 @@ These, when used in the standard parameterization return `V` up to equivalence.
|
|||
This leads to the theorem `standParam.exists_for_CKMatrix` which says that up to equivalence every
|
||||
CKM matrix can be written using the standard parameterization.
|
||||
|
||||
|
||||
-/
|
||||
open Matrix Complex
|
||||
open ComplexConjugate
|
||||
|
@ -333,7 +332,6 @@ lemma Vs_zero_iff_cos_sin_zero (V : CKMMatrix) :
|
|||
|
||||
end VAbs
|
||||
|
||||
|
||||
namespace standParam
|
||||
open Invariant
|
||||
|
||||
|
@ -409,7 +407,6 @@ lemma on_param_cos_θ₁₃_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.c
|
|||
rfl
|
||||
rfl
|
||||
|
||||
|
||||
lemma on_param_cos_θ₁₂_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.cos (θ₁₂ ⟦V⟧) = 0) :
|
||||
standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃ ≈ standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) 0 := by
|
||||
use 0, δ₁₃, δ₁₃, -δ₁₃, 0, - δ₁₃
|
||||
|
@ -434,7 +431,6 @@ lemma on_param_cos_θ₁₂_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.c
|
|||
ring_nf
|
||||
field_simp
|
||||
|
||||
|
||||
lemma on_param_cos_θ₂₃_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.cos (θ₂₃ ⟦V⟧) = 0) :
|
||||
standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃ ≈ standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) 0 := by
|
||||
use 0, δ₁₃, 0, 0, 0, - δ₁₃
|
||||
|
@ -451,7 +447,6 @@ lemma on_param_cos_θ₂₃_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.c
|
|||
ring
|
||||
field_simp
|
||||
|
||||
|
||||
lemma on_param_sin_θ₁₃_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.sin (θ₁₃ ⟦V⟧) = 0) :
|
||||
standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃ ≈ standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) 0 := by
|
||||
use 0, 0, 0, 0, 0, 0
|
||||
|
@ -488,8 +483,6 @@ lemma on_param_sin_θ₁₂_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.s
|
|||
ring_nf
|
||||
field_simp
|
||||
|
||||
|
||||
|
||||
lemma on_param_sin_θ₂₃_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.sin (θ₂₃ ⟦V⟧) = 0) :
|
||||
standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃ ≈ standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) 0 := by
|
||||
use 0, 0, δ₁₃, 0, 0, - δ₁₃
|
||||
|
@ -506,9 +499,6 @@ lemma on_param_sin_θ₂₃_eq_zero {V : CKMMatrix} (δ₁₃ : ℝ) (h : Real.s
|
|||
ring
|
||||
field_simp
|
||||
|
||||
|
||||
|
||||
|
||||
lemma eq_standParam_of_fstRowThdColRealCond {V : CKMMatrix} (hb : [V]ud ≠ 0 ∨ [V]us ≠ 0)
|
||||
(hV : FstRowThdColRealCond V) : V = standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) (- arg [V]ub) := by
|
||||
have hb' : VubAbs ⟦V⟧ ≠ 1 := by
|
||||
|
@ -565,7 +555,6 @@ lemma eq_standParam_of_fstRowThdColRealCond {V : CKMMatrix} (hb : [V]ud ≠ 0
|
|||
rw [VcbAbs_eq_S₂₃_mul_C₁₃ ⟦V⟧, S₂₃_eq_ℂsin_θ₂₃ ⟦V⟧, C₁₃]
|
||||
simp
|
||||
|
||||
|
||||
lemma eq_standParam_of_ubOnePhaseCond {V : CKMMatrix} (hV : ubOnePhaseCond V) :
|
||||
V = standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) 0 := by
|
||||
have h1 : VubAbs ⟦V⟧ = 1 := by
|
||||
|
@ -610,7 +599,6 @@ lemma eq_standParam_of_ubOnePhaseCond {V : CKMMatrix} (hV : ubOnePhaseCond V) :
|
|||
rw [C₁₃_eq_ℂcos_θ₁₃ ⟦V⟧, C₁₃_of_Vub_eq_one h1, hV.2.2.1]
|
||||
simp
|
||||
|
||||
|
||||
theorem exists_δ₁₃ (V : CKMMatrix) :
|
||||
∃ (δ₃ : ℝ), V ≈ standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₃ := by
|
||||
obtain ⟨U, hU⟩ := fstRowThdColRealCond_holds_up_to_equiv V
|
||||
|
@ -670,7 +658,6 @@ theorem eq_standardParameterization_δ₃ (V : CKMMatrix) :
|
|||
exact on_param_sin_θ₁₃_eq_zero δ₁₃' h
|
||||
exact on_param_sin_θ₂₃_eq_zero δ₁₃' h
|
||||
|
||||
|
||||
theorem exists_for_CKMatrix (V : CKMMatrix) :
|
||||
∃ (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ℝ), V ≈ standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃ := by
|
||||
use θ₁₂ ⟦V⟧, θ₁₃ ⟦V⟧, θ₂₃ ⟦V⟧, δ₁₃ ⟦V⟧
|
||||
|
@ -678,9 +665,6 @@ theorem exists_for_CKMatrix (V : CKMMatrix) :
|
|||
|
||||
end standParam
|
||||
|
||||
|
||||
open CKMMatrix
|
||||
|
||||
|
||||
|
||||
end
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue