refactor: Remove double empty lines

This commit is contained in:
jstoobysmith 2024-07-03 07:56:30 -04:00
parent ae18a2196d
commit f03d063c86
60 changed files with 0 additions and 232 deletions

View file

@ -44,7 +44,6 @@ def LorentzGroup (d : ) : Set (Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d)
{Λ : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) |
∀ (x y : LorentzVector d), ⟪Λ *ᵥ x, Λ *ᵥ y⟫ₘ = ⟪x, y⟫ₘ}
namespace LorentzGroup
/-- Notation for the Lorentz group. -/
scoped[LorentzGroup] notation (name := lorentzGroup_notation) "𝓛" => LorentzGroup

View file

@ -140,7 +140,6 @@ lemma toMatrix_continuous (u : FuturePointing d) : Continuous (toMatrix u) := by
exact FuturePointing.metric_continuous _
exact fun x => FuturePointing.one_add_metric_non_zero u x
lemma toMatrix_in_lorentzGroup (u v : FuturePointing d) : (toMatrix u v) ∈ LorentzGroup d:= by
intro x y
rw [toMatrix_mulVec, toMatrix_mulVec, genBoost, genBoostAux₁, genBoostAux₂]
@ -161,7 +160,6 @@ lemma toLorentz_continuous (u : FuturePointing d) : Continuous (toLorentz u) :=
refine Continuous.subtype_mk ?_ (fun x => toMatrix_in_lorentzGroup u x)
exact toMatrix_continuous u
lemma toLorentz_joined_to_1 (u v : FuturePointing d) : Joined 1 (toLorentz u v) := by
obtain ⟨f, _⟩ := FuturePointing.isPathConnected.joinedIn u trivial v trivial
use ContinuousMap.comp ⟨toLorentz u, toLorentz_continuous u⟩ f
@ -180,8 +178,6 @@ lemma isProper (u v : FuturePointing d) : IsProper (toLorentz u v) :=
end genBoost
end LorentzGroup
end

View file

@ -17,10 +17,8 @@ matrices.
-/
noncomputable section
open Matrix
open Complex
open ComplexConjugate
@ -66,7 +64,6 @@ lemma not_orthochronous_iff_le_zero :
rw [IsOrthochronous_iff_ge_one]
linarith
/-- The continuous map taking a Lorentz transformation to its `0 0` element. -/
def timeCompCont : C(LorentzGroup d, ) := ⟨fun Λ => timeComp Λ ,
Continuous.matrix_elem (continuous_iff_le_induced.mpr fun _ a => a) (Sum.inl 0) (Sum.inl 0)⟩

View file

@ -11,10 +11,8 @@ We define the give a series of lemmas related to the determinant of the lorentz
-/
noncomputable section
open Matrix
open Complex
open ComplexConjugate
@ -31,7 +29,6 @@ lemma det_eq_one_or_neg_one (Λ : 𝓛 d) : Λ.1.det = 1 Λ.1.det = -1 := by
simp [det_mul, det_dual] at h1
exact mul_self_eq_one_iff.mp h1
local notation "ℤ₂" => Multiplicative (ZMod 2)
instance : TopologicalSpace ℤ₂ := instTopologicalSpaceFin
@ -76,7 +73,6 @@ lemma detContinuous_eq_iff_det_eq (Λ Λ' : LorentzGroup d) :
· intro h
simp [detContinuous, h]
/-- The representation taking a lorentz matrix to its determinant. -/
@[simps!]
def detRep : 𝓛 d →* ℤ₂ where

View file

@ -54,8 +54,6 @@ def SO3ToLorentz : SO(3) →* LorentzGroup 3 where
apply Subtype.eq
simp [Matrix.fromBlocks_multiply]
end LorentzGroup
end