From f2eaa2ee433fbd41988cf1ef523e07489d007ddb Mon Sep 17 00:00:00 2001 From: jstoobysmith <72603918+jstoobysmith@users.noreply.github.com> Date: Fri, 25 Oct 2024 13:54:58 +0000 Subject: [PATCH] refactor: Lint --- HepLean/Tensors/ComplexLorentz/Basic.lean | 1 - .../Tensors/ComplexLorentz/BasisTrees.lean | 57 +++++++++---------- .../Tensors/ComplexLorentz/PauliLower.lean | 3 +- HepLean/Tensors/Tree/Basic.lean | 10 ++-- 4 files changed, 33 insertions(+), 38 deletions(-) diff --git a/HepLean/Tensors/ComplexLorentz/Basic.lean b/HepLean/Tensors/ComplexLorentz/Basic.lean index 0cc1723..484bf44 100644 --- a/HepLean/Tensors/ComplexLorentz/Basic.lean +++ b/HepLean/Tensors/ComplexLorentz/Basic.lean @@ -209,6 +209,5 @@ lemma basis_contr (c : complexLorentzTensor.C) (i : Fin (complexLorentzTensor.re | Color.up => Lorentz.contrCoContraction_basis _ _ | Color.down => Lorentz.coContrContraction_basis _ _ - end complexLorentzTensor end diff --git a/HepLean/Tensors/ComplexLorentz/BasisTrees.lean b/HepLean/Tensors/ComplexLorentz/BasisTrees.lean index 9dd69eb..542a127 100644 --- a/HepLean/Tensors/ComplexLorentz/BasisTrees.lean +++ b/HepLean/Tensors/ComplexLorentz/BasisTrees.lean @@ -177,7 +177,6 @@ lemma basis_contr_pauliMatrix_basis_tree_expand' {n : ℕ} {c : Fin n → comple <| contr_tensor_eq <| prod_basisVector_tree _ _] rfl - def pauliMatrixBasisProdMap {n : ℕ} {c : Fin n → complexLorentzTensor.C} (b : Π k, Fin (complexLorentzTensor.repDim (c k))) (i1 i2 i3 : Fin 4) : @@ -190,10 +189,11 @@ def pauliMatrixBasisProdMap def basisVectorContrPauli {n : ℕ} {c : Fin n → complexLorentzTensor.C} (i : Fin (n + 3)) (j : Fin (n +2)) (b : Π k, Fin (complexLorentzTensor.repDim (c k))) - (i1 i2 i3 : Fin 4) := + (i1 i2 i3 : Fin 4) := let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm) ∘ Fin.succAbove i ∘ Fin.succAbove j - let b' (i1 i2 i3 : Fin 4) := fun k => (pauliMatrixBasisProdMap b i1 i2 i3) (i.succAbove (j.succAbove k)) + let b' (i1 i2 i3 : Fin 4) := fun k => (pauliMatrixBasisProdMap b i1 i2 i3) + (i.succAbove (j.succAbove k)) basisVector c' (b' i1 i2 i3) lemma basis_contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C} @@ -203,7 +203,8 @@ lemma basis_contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complex (b : Π k, Fin (complexLorentzTensor.repDim (c k))) : let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm) ∘ Fin.succAbove i ∘ Fin.succAbove j - let b' (i1 i2 i3 : Fin 4) := fun k => (pauliMatrixBasisProdMap b i1 i2 i3) (i.succAbove (j.succAbove k)) + let b' (i1 i2 i3 : Fin 4) := fun k => (pauliMatrixBasisProdMap b i1 i2 i3) + (i.succAbove (j.succAbove k)) (contr i j h (TensorTree.prod (tensorNode (basisVector c b)) (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor))).tensor = ((( @@ -215,13 +216,16 @@ lemma basis_contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complex (tensorNode (basisVector c' (b' 1 0 1))))).add (((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 1 0)) (tensorNode (basisVector c' (b' 1 1 0))))).add - ((TensorTree.smul (-I) ((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 0 1)) + ((TensorTree.smul (-I) ((TensorTree.smul + (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 0 1)) (tensorNode (basisVector c' (b' 2 0 1)))))).add - ((TensorTree.smul I ((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 1 0)) + ((TensorTree.smul I ((TensorTree.smul + (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 1 0)) (tensorNode (basisVector c' (b' 2 1 0)))))).add (((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 0 0)) (tensorNode (basisVector c' (b' 3 0 0))))).add - (TensorTree.smul (-1) ((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 1 1)) (tensorNode + (TensorTree.smul (-1) ((TensorTree.smul + (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 1 1)) (tensorNode (basisVector c' (b' 3 1 1))))))))))))).tensor := by rw [basis_contr_pauliMatrix_basis_tree_expand'] /- Contracting basis vectors. -/ @@ -243,35 +247,30 @@ lemma basis_contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complex smul_tensor_eq <| contr_basisVector_tree _] rfl -def pauilMatrixBasisContrMap {n : ℕ} {c : Fin n → complexLorentzTensor.C} - (i : Fin (n + 3)) (j : Fin (n +2)) - (b : Π k, Fin (complexLorentzTensor.repDim (c k))) (i1 i2 i3 : Fin 4) : - (k : Fin (n + 1)) → - Fin - (complexLorentzTensor.repDim - (Sum.elim c ![Color.up, Color.upL, Color.upR] (finSumFinEquiv.symm (i.succAbove (j.succAbove k))))) := - fun k => (pauliMatrixBasisProdMap b i1 i2 i3) (i.succAbove (j.succAbove k)) - - lemma basis_contr_pauliMatrix_basis_tree_expand_tensor {n : ℕ} {c : Fin n → complexLorentzTensor.C} (i : Fin (n + 3)) (j : Fin (n +2)) (h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) (b : Π k, Fin (complexLorentzTensor.repDim (c k))) : - let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm) - ∘ Fin.succAbove i ∘ Fin.succAbove j - let b' (i1 i2 i3 : Fin 4) := fun k => (pauliMatrixBasisProdMap b i1 i2 i3) (i.succAbove (j.succAbove k)) (contr i j h (TensorTree.prod (tensorNode (basisVector c b)) (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor))).tensor = - (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 0 0)) • (basisVectorContrPauli i j b 0 0 0) - + (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 1 1)) • (basisVectorContrPauli i j b 0 1 1) - + (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 0 1)) • (basisVectorContrPauli i j b 1 0 1) - + (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 1 0)) • (basisVectorContrPauli i j b 1 1 0) - + (-I) • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 0 1)) • (basisVectorContrPauli i j b 2 0 1) - + I • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 1 0)) • (basisVectorContrPauli i j b 2 1 0) - + (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 0 0)) • (basisVectorContrPauli i j b 3 0 0) - + (-1 : ℂ) • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 1 1)) • (basisVectorContrPauli i j b 3 1 1) := by + (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 0 0)) • + (basisVectorContrPauli i j b 0 0 0) + + (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 1 1)) • + (basisVectorContrPauli i j b 0 1 1) + + (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 0 1)) • + (basisVectorContrPauli i j b 1 0 1) + + (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 1 0)) • + (basisVectorContrPauli i j b 1 1 0) + + (-I) • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 0 1)) • + (basisVectorContrPauli i j b 2 0 1) + + I • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 1 0)) • + (basisVectorContrPauli i j b 2 1 0) + + (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 0 0)) • + (basisVectorContrPauli i j b 3 0 0) + + (-1 : ℂ) • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 1 1)) • + (basisVectorContrPauli i j b 3 1 1) := by rw [basis_contr_pauliMatrix_basis_tree_expand] simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, cons_val_one, head_cons, Fin.val_zero, Nat.cast_zero, cons_val_two, Fin.val_one, Nat.cast_one, add_tensor, smul_tensor, @@ -279,8 +278,6 @@ lemma basis_contr_pauliMatrix_basis_tree_expand_tensor {n : ℕ} {c : Fin n → simp_all only [Function.comp_apply, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue] rfl - - end complexLorentzTensor end diff --git a/HepLean/Tensors/ComplexLorentz/PauliLower.lean b/HepLean/Tensors/ComplexLorentz/PauliLower.lean index a283de0..191b0e4 100644 --- a/HepLean/Tensors/ComplexLorentz/PauliLower.lean +++ b/HepLean/Tensors/ComplexLorentz/PauliLower.lean @@ -76,7 +76,7 @@ lemma pauliMatrix_contr_down_0 : fin_cases k <;> rfl lemma pauliMatrix_contr_down_1 : - {(basisVector ![Color.down, Color.down] fun x => 1) | ν μ ⊗ + {(basisVector ![Color.down, Color.down] fun x => 1) | ν μ ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ.tensor = basisVector pauliCoMap (fun | 0 => 1 | 1 => 0 | 2 => 1) + basisVector pauliCoMap (fun | 0 => 1 | 1 => 1 | 2 => 0) := by @@ -268,7 +268,6 @@ lemma pauliCo_basis_expand : pauliCo simp only [neg_smul, one_smul] abel - lemma pauliCo_basis_expand_tree : pauliCo = (TensorTree.add (tensorNode (basisVector pauliCoMap (fun | 0 => 0 | 1 => 0 | 2 => 0))) <| diff --git a/HepLean/Tensors/Tree/Basic.lean b/HepLean/Tensors/Tree/Basic.lean index 013c1be..cee6bfe 100644 --- a/HepLean/Tensors/Tree/Basic.lean +++ b/HepLean/Tensors/Tree/Basic.lean @@ -791,11 +791,11 @@ def zeroTree {n : ℕ} {c : Fin n → S.C} : TensorTree S c := tensorNode 0 lemma zeroTree_tensor {n : ℕ} {c : Fin n → S.C} : (zeroTree (c := c)).tensor = 0 := by rfl -lemma zero_smul {T1 : TensorTree S c} : +lemma zero_smul {T1 : TensorTree S c} : (smul 0 T1).tensor = zeroTree.tensor := by simp only [smul_tensor, _root_.zero_smul, zeroTree_tensor] -lemma smul_zero {a : S.k} : (smul a (zeroTree (c :=c ))).tensor = zeroTree.tensor := by +lemma smul_zero {a : S.k} : (smul a (zeroTree (c := c))).tensor = zeroTree.tensor := by simp only [smul_tensor, zeroTree_tensor, _root_.smul_zero] lemma zero_add {T1 : TensorTree S c} : (add zeroTree T1).tensor = T1.tensor := by @@ -808,11 +808,11 @@ lemma perm_zero {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C} (σ : (Over (OverColor.mk c1)) : (perm σ zeroTree).tensor = zeroTree.tensor := by simp only [perm_tensor, zeroTree_tensor, map_zero] -lemma neg_zero : (neg (zeroTree (c := c))).tensor = zeroTree.tensor := by +lemma neg_zero : (neg (zeroTree (c := c))).tensor = zeroTree.tensor := by simp only [neg_tensor, zeroTree_tensor, _root_.neg_zero] -lemma contr_zero {n : ℕ} {c : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} - {h : c (i.succAbove j) = S.τ (c i)} : (contr i j h zeroTree).tensor = zeroTree.tensor := by +lemma contr_zero {n : ℕ} {c : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} + {h : c (i.succAbove j) = S.τ (c i)} : (contr i j h zeroTree).tensor = zeroTree.tensor := by simp only [contr_tensor, zeroTree_tensor, map_zero] lemma zero_prod {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C} (t : TensorTree S c1) :