refactor: Lint
This commit is contained in:
parent
e11bf41f4c
commit
f2eaa2ee43
4 changed files with 33 additions and 38 deletions
|
@ -209,6 +209,5 @@ lemma basis_contr (c : complexLorentzTensor.C) (i : Fin (complexLorentzTensor.re
|
|||
| Color.up => Lorentz.contrCoContraction_basis _ _
|
||||
| Color.down => Lorentz.coContrContraction_basis _ _
|
||||
|
||||
|
||||
end complexLorentzTensor
|
||||
end
|
||||
|
|
|
@ -177,7 +177,6 @@ lemma basis_contr_pauliMatrix_basis_tree_expand' {n : ℕ} {c : Fin n → comple
|
|||
<| contr_tensor_eq <| prod_basisVector_tree _ _]
|
||||
rfl
|
||||
|
||||
|
||||
def pauliMatrixBasisProdMap
|
||||
{n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) (i1 i2 i3 : Fin 4) :
|
||||
|
@ -190,10 +189,11 @@ def pauliMatrixBasisProdMap
|
|||
def basisVectorContrPauli {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||
(i : Fin (n + 3)) (j : Fin (n +2))
|
||||
(b : Π k, Fin (complexLorentzTensor.repDim (c k)))
|
||||
(i1 i2 i3 : Fin 4) :=
|
||||
(i1 i2 i3 : Fin 4) :=
|
||||
let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm)
|
||||
∘ Fin.succAbove i ∘ Fin.succAbove j
|
||||
let b' (i1 i2 i3 : Fin 4) := fun k => (pauliMatrixBasisProdMap b i1 i2 i3) (i.succAbove (j.succAbove k))
|
||||
let b' (i1 i2 i3 : Fin 4) := fun k => (pauliMatrixBasisProdMap b i1 i2 i3)
|
||||
(i.succAbove (j.succAbove k))
|
||||
basisVector c' (b' i1 i2 i3)
|
||||
|
||||
lemma basis_contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||
|
@ -203,7 +203,8 @@ lemma basis_contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complex
|
|||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
|
||||
let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm)
|
||||
∘ Fin.succAbove i ∘ Fin.succAbove j
|
||||
let b' (i1 i2 i3 : Fin 4) := fun k => (pauliMatrixBasisProdMap b i1 i2 i3) (i.succAbove (j.succAbove k))
|
||||
let b' (i1 i2 i3 : Fin 4) := fun k => (pauliMatrixBasisProdMap b i1 i2 i3)
|
||||
(i.succAbove (j.succAbove k))
|
||||
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
|
||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||
PauliMatrix.asConsTensor))).tensor = (((
|
||||
|
@ -215,13 +216,16 @@ lemma basis_contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complex
|
|||
(tensorNode (basisVector c' (b' 1 0 1))))).add
|
||||
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 1 0))
|
||||
(tensorNode (basisVector c' (b' 1 1 0))))).add
|
||||
((TensorTree.smul (-I) ((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 0 1))
|
||||
((TensorTree.smul (-I) ((TensorTree.smul
|
||||
(contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 0 1))
|
||||
(tensorNode (basisVector c' (b' 2 0 1)))))).add
|
||||
((TensorTree.smul I ((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 1 0))
|
||||
((TensorTree.smul I ((TensorTree.smul
|
||||
(contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 1 0))
|
||||
(tensorNode (basisVector c' (b' 2 1 0)))))).add
|
||||
(((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 0 0))
|
||||
(tensorNode (basisVector c' (b' 3 0 0))))).add
|
||||
(TensorTree.smul (-1) ((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 1 1)) (tensorNode
|
||||
(TensorTree.smul (-1) ((TensorTree.smul
|
||||
(contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 1 1)) (tensorNode
|
||||
(basisVector c' (b' 3 1 1))))))))))))).tensor := by
|
||||
rw [basis_contr_pauliMatrix_basis_tree_expand']
|
||||
/- Contracting basis vectors. -/
|
||||
|
@ -243,35 +247,30 @@ lemma basis_contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complex
|
|||
smul_tensor_eq <| contr_basisVector_tree _]
|
||||
rfl
|
||||
|
||||
def pauilMatrixBasisContrMap {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||
(i : Fin (n + 3)) (j : Fin (n +2))
|
||||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) (i1 i2 i3 : Fin 4) :
|
||||
(k : Fin (n + 1)) →
|
||||
Fin
|
||||
(complexLorentzTensor.repDim
|
||||
(Sum.elim c ![Color.up, Color.upL, Color.upR] (finSumFinEquiv.symm (i.succAbove (j.succAbove k))))) :=
|
||||
fun k => (pauliMatrixBasisProdMap b i1 i2 i3) (i.succAbove (j.succAbove k))
|
||||
|
||||
|
||||
lemma basis_contr_pauliMatrix_basis_tree_expand_tensor {n : ℕ} {c : Fin n → complexLorentzTensor.C}
|
||||
(i : Fin (n + 3)) (j : Fin (n +2))
|
||||
(h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ
|
||||
((pauliMatrixContrMap c) i))
|
||||
(b : Π k, Fin (complexLorentzTensor.repDim (c k))) :
|
||||
let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm)
|
||||
∘ Fin.succAbove i ∘ Fin.succAbove j
|
||||
let b' (i1 i2 i3 : Fin 4) := fun k => (pauliMatrixBasisProdMap b i1 i2 i3) (i.succAbove (j.succAbove k))
|
||||
(contr i j h (TensorTree.prod (tensorNode (basisVector c b))
|
||||
(constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR
|
||||
PauliMatrix.asConsTensor))).tensor =
|
||||
(contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 0 0)) • (basisVectorContrPauli i j b 0 0 0)
|
||||
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 1 1)) • (basisVectorContrPauli i j b 0 1 1)
|
||||
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 0 1)) • (basisVectorContrPauli i j b 1 0 1)
|
||||
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 1 0)) • (basisVectorContrPauli i j b 1 1 0)
|
||||
+ (-I) • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 0 1)) • (basisVectorContrPauli i j b 2 0 1)
|
||||
+ I • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 1 0)) • (basisVectorContrPauli i j b 2 1 0)
|
||||
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 0 0)) • (basisVectorContrPauli i j b 3 0 0)
|
||||
+ (-1 : ℂ) • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 1 1)) • (basisVectorContrPauli i j b 3 1 1) := by
|
||||
(contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 0 0)) •
|
||||
(basisVectorContrPauli i j b 0 0 0)
|
||||
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 1 1)) •
|
||||
(basisVectorContrPauli i j b 0 1 1)
|
||||
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 0 1)) •
|
||||
(basisVectorContrPauli i j b 1 0 1)
|
||||
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 1 0)) •
|
||||
(basisVectorContrPauli i j b 1 1 0)
|
||||
+ (-I) • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 0 1)) •
|
||||
(basisVectorContrPauli i j b 2 0 1)
|
||||
+ I • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 1 0)) •
|
||||
(basisVectorContrPauli i j b 2 1 0)
|
||||
+ (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 0 0)) •
|
||||
(basisVectorContrPauli i j b 3 0 0)
|
||||
+ (-1 : ℂ) • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 1 1)) •
|
||||
(basisVectorContrPauli i j b 3 1 1) := by
|
||||
rw [basis_contr_pauliMatrix_basis_tree_expand]
|
||||
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, cons_val_one, head_cons, Fin.val_zero,
|
||||
Nat.cast_zero, cons_val_two, Fin.val_one, Nat.cast_one, add_tensor, smul_tensor,
|
||||
|
@ -279,8 +278,6 @@ lemma basis_contr_pauliMatrix_basis_tree_expand_tensor {n : ℕ} {c : Fin n →
|
|||
simp_all only [Function.comp_apply, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue]
|
||||
rfl
|
||||
|
||||
|
||||
|
||||
end complexLorentzTensor
|
||||
|
||||
end
|
||||
|
|
|
@ -76,7 +76,7 @@ lemma pauliMatrix_contr_down_0 :
|
|||
fin_cases k <;> rfl
|
||||
|
||||
lemma pauliMatrix_contr_down_1 :
|
||||
{(basisVector ![Color.down, Color.down] fun x => 1) | ν μ ⊗
|
||||
{(basisVector ![Color.down, Color.down] fun x => 1) | ν μ ⊗
|
||||
PauliMatrix.asConsTensor | μ α β}ᵀ.tensor
|
||||
= basisVector pauliCoMap (fun | 0 => 1 | 1 => 0 | 2 => 1)
|
||||
+ basisVector pauliCoMap (fun | 0 => 1 | 1 => 1 | 2 => 0) := by
|
||||
|
@ -268,7 +268,6 @@ lemma pauliCo_basis_expand : pauliCo
|
|||
simp only [neg_smul, one_smul]
|
||||
abel
|
||||
|
||||
|
||||
lemma pauliCo_basis_expand_tree : pauliCo
|
||||
= (TensorTree.add (tensorNode
|
||||
(basisVector pauliCoMap (fun | 0 => 0 | 1 => 0 | 2 => 0))) <|
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue