feat: Complex Lorentz vector & Monoidal struct
This commit is contained in:
parent
37a6a23d1e
commit
f555bc6722
5 changed files with 291 additions and 18 deletions
|
@ -21,7 +21,7 @@ open Matrix
|
|||
open MatrixGroups
|
||||
open Complex
|
||||
|
||||
/-- A 2×2-complex matrix formed from a space-time point. -/
|
||||
/-- A 2×2-complex matrix formed from a Lorentz vector point. -/
|
||||
@[simp]
|
||||
def toMatrix (x : LorentzVector 3) : Matrix (Fin 2) (Fin 2) ℂ :=
|
||||
!![x.time + x.space 2, x.space 0 - x.space 1 * I; x.space 0 + x.space 1 * I, x.time - x.space 2]
|
||||
|
@ -34,12 +34,12 @@ lemma toMatrix_isSelfAdjoint (x : LorentzVector 3) : IsSelfAdjoint (toMatrix x)
|
|||
simp [toMatrix, conj_ofReal]
|
||||
rfl
|
||||
|
||||
/-- A self-adjoint matrix formed from a space-time point. -/
|
||||
/-- A self-adjoint matrix formed from a Lorentz vector point. -/
|
||||
@[simps!]
|
||||
def toSelfAdjointMatrix' (x : LorentzVector 3) : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) :=
|
||||
⟨toMatrix x, toMatrix_isSelfAdjoint x⟩
|
||||
|
||||
/-- A self-adjoint matrix formed from a space-time point. -/
|
||||
/-- A self-adjoint matrix formed from a Lorentz vector point. -/
|
||||
@[simp]
|
||||
noncomputable def fromSelfAdjointMatrix' (x : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) :
|
||||
LorentzVector 3 := fun i =>
|
||||
|
|
39
HepLean/SpaceTime/LorentzVector/Complex.lean
Normal file
39
HepLean/SpaceTime/LorentzVector/Complex.lean
Normal file
|
@ -0,0 +1,39 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import Mathlib.Data.Complex.Exponential
|
||||
import Mathlib.Analysis.InnerProductSpace.PiL2
|
||||
import HepLean.SpaceTime.SL2C.Basic
|
||||
import HepLean.SpaceTime.LorentzVector.Modules
|
||||
import HepLean.Meta.Informal
|
||||
import Mathlib.RepresentationTheory.Rep
|
||||
import HepLean.Tensors.Basic
|
||||
/-!
|
||||
|
||||
# Complex Lorentz vectors
|
||||
|
||||
We define complex Lorentz vectors in 4d space-time as representations of SL(2, C).
|
||||
|
||||
-/
|
||||
|
||||
noncomputable section
|
||||
|
||||
open Matrix
|
||||
open MatrixGroups
|
||||
open Complex
|
||||
open TensorProduct
|
||||
|
||||
namespace Lorentz
|
||||
|
||||
/-- The representation of `SL(2, ℂ)` on complex vectors corresponding to contravariant
|
||||
Lorentz vectors. -/
|
||||
def complexContr : Rep ℂ SL(2, ℂ) := Rep.of ContrℂModule.SL2CRep
|
||||
|
||||
/-- The representation of `SL(2, ℂ)` on complex vectors corresponding to contravariant
|
||||
Lorentz vectors. -/
|
||||
def complexCo : Rep ℂ SL(2, ℂ) := Rep.of CoℂModule.SL2CRep
|
||||
|
||||
end Lorentz
|
||||
end
|
158
HepLean/SpaceTime/LorentzVector/Modules.lean
Normal file
158
HepLean/SpaceTime/LorentzVector/Modules.lean
Normal file
|
@ -0,0 +1,158 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.Meta.Informal
|
||||
import HepLean.SpaceTime.SL2C.Basic
|
||||
import Mathlib.RepresentationTheory.Rep
|
||||
import HepLean.Tensors.Basic
|
||||
import Mathlib.Logic.Equiv.TransferInstance
|
||||
/-!
|
||||
|
||||
## Modules associated with Lorentz vectors
|
||||
|
||||
These have not yet been fully-implmented.
|
||||
|
||||
We define these modules to prevent casting between different types of Lorentz vectors.
|
||||
|
||||
-/
|
||||
|
||||
namespace Lorentz
|
||||
|
||||
noncomputable section
|
||||
open Matrix
|
||||
open MatrixGroups
|
||||
open Complex
|
||||
|
||||
structure ContrℂModule where
|
||||
val : Fin 1 ⊕ Fin 3 → ℂ
|
||||
|
||||
namespace ContrℂModule
|
||||
|
||||
/-- The equivalence between `ContrℂModule` and `Fin 1 ⊕ Fin 3 → ℂ`. -/
|
||||
def toFin13ℂFun : ContrℂModule ≃ (Fin 1 ⊕ Fin 3 → ℂ) where
|
||||
toFun v := v.val
|
||||
invFun f := ⟨f⟩
|
||||
left_inv _ := rfl
|
||||
right_inv _ := rfl
|
||||
|
||||
/-- The instance of `AddCommMonoid` on `ContrℂModule` defined via its equivalence
|
||||
with `Fin 1 ⊕ Fin 3 → ℂ`. -/
|
||||
instance : AddCommMonoid ContrℂModule := Equiv.addCommMonoid toFin13ℂFun
|
||||
|
||||
/-- The instance of `AddCommGroup` on `ContrℂModule` defined via its equivalence
|
||||
with `Fin 1 ⊕ Fin 3 → ℂ`. -/
|
||||
instance : AddCommGroup ContrℂModule := Equiv.addCommGroup toFin13ℂFun
|
||||
|
||||
/-- The instance of `Module` on `ContrℂModule` defined via its equivalence
|
||||
with `Fin 1 ⊕ Fin 3 → ℂ`. -/
|
||||
instance : Module ℂ ContrℂModule := Equiv.module ℂ toFin13ℂFun
|
||||
|
||||
/-- The linear equivalence between `ContrℂModule` and `(Fin 1 ⊕ Fin 3 → ℂ)`. -/
|
||||
@[simps!]
|
||||
def toFin13ℂEquiv : ContrℂModule ≃ₗ[ℂ] (Fin 1 ⊕ Fin 3 → ℂ) where
|
||||
toFun := toFin13ℂFun
|
||||
map_add' := fun _ _ => rfl
|
||||
map_smul' := fun _ _ => rfl
|
||||
invFun := toFin13ℂFun.symm
|
||||
left_inv := fun _ => rfl
|
||||
right_inv := fun _ => rfl
|
||||
|
||||
/-- The underlying element of `Fin 1 ⊕ Fin 3 → ℂ` of a element in `ContrℂModule` defined
|
||||
through the linear equivalence `toFin13ℂEquiv`. -/
|
||||
abbrev toFin13ℂ (ψ : ContrℂModule) := toFin13ℂEquiv ψ
|
||||
|
||||
/-- The representation of the Lorentz group on `ContrℂModule`. -/
|
||||
def lorentzGroupRep : Representation ℂ (LorentzGroup 3) ContrℂModule where
|
||||
toFun M := {
|
||||
toFun := fun v => toFin13ℂEquiv.symm ((M.1.map ofReal) *ᵥ v.toFin13ℂ),
|
||||
map_add' := by
|
||||
intro ψ ψ'
|
||||
simp [mulVec_add]
|
||||
map_smul' := by
|
||||
intro r ψ
|
||||
simp [mulVec_smul]}
|
||||
map_one' := by
|
||||
ext i
|
||||
simp
|
||||
map_mul' M N := by
|
||||
ext i
|
||||
simp
|
||||
|
||||
/-- The representation of the SL(2, ℂ) on `ContrℂModule` induced by the representation of the
|
||||
Lorentz group. -/
|
||||
def SL2CRep : Representation ℂ SL(2, ℂ) ContrℂModule :=
|
||||
MonoidHom.comp lorentzGroupRep SpaceTime.SL2C.toLorentzGroup
|
||||
|
||||
end ContrℂModule
|
||||
|
||||
structure CoℂModule where
|
||||
val : Fin 1 ⊕ Fin 3 → ℂ
|
||||
|
||||
namespace CoℂModule
|
||||
|
||||
/-- The equivalence between `CoℂModule` and `Fin 1 ⊕ Fin 3 → ℂ`. -/
|
||||
def toFin13ℂFun : CoℂModule ≃ (Fin 1 ⊕ Fin 3 → ℂ) where
|
||||
toFun v := v.val
|
||||
invFun f := ⟨f⟩
|
||||
left_inv _ := rfl
|
||||
right_inv _ := rfl
|
||||
|
||||
/-- The instance of `AddCommMonoid` on `CoℂModule` defined via its equivalence
|
||||
with `Fin 1 ⊕ Fin 3 → ℂ`. -/
|
||||
instance : AddCommMonoid CoℂModule := Equiv.addCommMonoid toFin13ℂFun
|
||||
|
||||
/-- The instance of `AddCommGroup` on `CoℂModule` defined via its equivalence
|
||||
with `Fin 1 ⊕ Fin 3 → ℂ`. -/
|
||||
instance : AddCommGroup CoℂModule := Equiv.addCommGroup toFin13ℂFun
|
||||
|
||||
/-- The instance of `Module` on `CoℂModule` defined via its equivalence
|
||||
with `Fin 1 ⊕ Fin 3 → ℂ`. -/
|
||||
instance : Module ℂ CoℂModule := Equiv.module ℂ toFin13ℂFun
|
||||
|
||||
/-- The linear equivalence between `CoℂModule` and `(Fin 1 ⊕ Fin 3 → ℂ)`. -/
|
||||
@[simps!]
|
||||
def toFin13ℂEquiv : CoℂModule ≃ₗ[ℂ] (Fin 1 ⊕ Fin 3 → ℂ) where
|
||||
toFun := toFin13ℂFun
|
||||
map_add' := fun _ _ => rfl
|
||||
map_smul' := fun _ _ => rfl
|
||||
invFun := toFin13ℂFun.symm
|
||||
left_inv := fun _ => rfl
|
||||
right_inv := fun _ => rfl
|
||||
|
||||
/-- The underlying element of `Fin 1 ⊕ Fin 3 → ℂ` of a element in `CoℂModule` defined
|
||||
through the linear equivalence `toFin13ℂEquiv`. -/
|
||||
abbrev toFin13ℂ (ψ : CoℂModule) := toFin13ℂEquiv ψ
|
||||
|
||||
/-- The representation of the Lorentz group on `CoℂModule`. -/
|
||||
def lorentzGroupRep : Representation ℂ (LorentzGroup 3) CoℂModule where
|
||||
toFun M := {
|
||||
toFun := fun v => toFin13ℂEquiv.symm ((M.1.map ofReal)⁻¹ᵀ *ᵥ v.toFin13ℂ),
|
||||
map_add' := by
|
||||
intro ψ ψ'
|
||||
simp [mulVec_add]
|
||||
map_smul' := by
|
||||
intro r ψ
|
||||
simp [mulVec_smul]}
|
||||
map_one' := by
|
||||
ext i
|
||||
simp
|
||||
map_mul' M N := by
|
||||
ext1 x
|
||||
simp only [SpecialLinearGroup.coe_mul, LinearMap.coe_mk, AddHom.coe_mk, LinearMap.mul_apply,
|
||||
LinearEquiv.apply_symm_apply, mulVec_mulVec, EmbeddingLike.apply_eq_iff_eq]
|
||||
refine (congrFun (congrArg _ ?_) _)
|
||||
simp only [lorentzGroupIsGroup_mul_coe, Matrix.map_mul]
|
||||
rw [Matrix.mul_inv_rev]
|
||||
exact transpose_mul _ _
|
||||
|
||||
/-- The representation of the SL(2, ℂ) on `ContrℂModule` induced by the representation of the
|
||||
Lorentz group. -/
|
||||
def SL2CRep : Representation ℂ SL(2, ℂ) CoℂModule :=
|
||||
MonoidHom.comp lorentzGroupRep SpaceTime.SL2C.toLorentzGroup
|
||||
|
||||
end CoℂModule
|
||||
|
||||
end
|
||||
end Lorentz
|
Loading…
Add table
Add a link
Reference in a new issue