refactor: rename normalOrder for CrAnAlgebra
This commit is contained in:
parent
289050c829
commit
f5e7bbad59
5 changed files with 249 additions and 249 deletions
|
@ -24,53 +24,53 @@ variable {𝓕 : FieldSpecification}
|
|||
## Normal order on super-commutators.
|
||||
|
||||
The main result of this is
|
||||
`ι_normalOrder_superCommuteF_eq_zero_mul`
|
||||
`ι_normalOrderF_superCommuteF_eq_zero_mul`
|
||||
which states that applying `ι` to the normal order of something containing a super-commutator
|
||||
is zero.
|
||||
|
||||
-/
|
||||
|
||||
lemma ι_normalOrder_superCommuteF_ofCrAnList_ofCrAnList_eq_zero
|
||||
lemma ι_normalOrderF_superCommuteF_ofCrAnList_ofCrAnList_eq_zero
|
||||
(φa φa' : 𝓕.CrAnStates) (φs φs' : List 𝓕.CrAnStates) :
|
||||
ι 𝓝ᶠ(ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca * ofCrAnList φs') = 0 := by
|
||||
rcases CreateAnnihilate.eq_create_or_annihilate (𝓕 |>ᶜ φa) with hφa | hφa
|
||||
<;> rcases CreateAnnihilate.eq_create_or_annihilate (𝓕 |>ᶜ φa') with hφa' | hφa'
|
||||
· rw [normalOrder_superCommuteF_ofCrAnList_create_create_ofCrAnList φa φa' hφa hφa' φs φs']
|
||||
· rw [normalOrderF_superCommuteF_ofCrAnList_create_create_ofCrAnList φa φa' hφa hφa' φs φs']
|
||||
rw [map_smul, map_mul, map_mul, map_mul, ι_superCommuteF_of_create_create φa φa' hφa hφa']
|
||||
simp
|
||||
· rw [normalOrder_superCommuteF_create_annihilate φa φa' hφa hφa' (ofCrAnList φs)
|
||||
· rw [normalOrderF_superCommuteF_create_annihilate φa φa' hφa hφa' (ofCrAnList φs)
|
||||
(ofCrAnList φs')]
|
||||
simp
|
||||
· rw [normalOrder_superCommuteF_annihilate_create φa' φa hφa' hφa (ofCrAnList φs)
|
||||
· rw [normalOrderF_superCommuteF_annihilate_create φa' φa hφa' hφa (ofCrAnList φs)
|
||||
(ofCrAnList φs')]
|
||||
simp
|
||||
· rw [normalOrder_superCommuteF_ofCrAnList_annihilate_annihilate_ofCrAnList φa φa' hφa hφa' φs φs']
|
||||
· rw [normalOrderF_superCommuteF_ofCrAnList_annihilate_annihilate_ofCrAnList φa φa' hφa hφa' φs φs']
|
||||
rw [map_smul, map_mul, map_mul, map_mul,
|
||||
ι_superCommuteF_of_annihilate_annihilate φa φa' hφa hφa']
|
||||
simp
|
||||
|
||||
lemma ι_normalOrder_superCommuteF_ofCrAnList_eq_zero
|
||||
lemma ι_normalOrderF_superCommuteF_ofCrAnList_eq_zero
|
||||
(φa φa' : 𝓕.CrAnStates) (φs : List 𝓕.CrAnStates)
|
||||
(a : 𝓕.CrAnAlgebra) : ι 𝓝ᶠ(ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca * a) = 0 := by
|
||||
have hf : ι.toLinearMap ∘ₗ normalOrder ∘ₗ
|
||||
have hf : ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
|
||||
mulLinearMap (ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca) = 0 := by
|
||||
apply ofCrAnListBasis.ext
|
||||
intro l
|
||||
simp only [CrAnAlgebra.ofListBasis_eq_ofList, LinearMap.coe_comp, Function.comp_apply,
|
||||
AlgHom.toLinearMap_apply, LinearMap.zero_apply]
|
||||
exact ι_normalOrder_superCommuteF_ofCrAnList_ofCrAnList_eq_zero φa φa' φs l
|
||||
change (ι.toLinearMap ∘ₗ normalOrder ∘ₗ
|
||||
exact ι_normalOrderF_superCommuteF_ofCrAnList_ofCrAnList_eq_zero φa φa' φs l
|
||||
change (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
|
||||
mulLinearMap ((ofCrAnList φs * [ofCrAnState φa, ofCrAnState φa']ₛca))) a = 0
|
||||
rw [hf]
|
||||
simp
|
||||
|
||||
lemma ι_normalOrder_superCommuteF_ofCrAnState_eq_zero_mul (φa φa' : 𝓕.CrAnStates)
|
||||
lemma ι_normalOrderF_superCommuteF_ofCrAnState_eq_zero_mul (φa φa' : 𝓕.CrAnStates)
|
||||
(a b : 𝓕.CrAnAlgebra) :
|
||||
ι 𝓝ᶠ(a * [ofCrAnState φa, ofCrAnState φa']ₛca * b) = 0 := by
|
||||
rw [mul_assoc]
|
||||
change (ι.toLinearMap ∘ₗ normalOrder ∘ₗ mulLinearMap.flip
|
||||
change (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ mulLinearMap.flip
|
||||
([ofCrAnState φa, ofCrAnState φa']ₛca * b)) a = 0
|
||||
have hf : ι.toLinearMap ∘ₗ normalOrder ∘ₗ mulLinearMap.flip
|
||||
have hf : ι.toLinearMap ∘ₗ normalOrderF ∘ₗ mulLinearMap.flip
|
||||
([ofCrAnState φa, ofCrAnState φa']ₛca * b) = 0 := by
|
||||
apply ofCrAnListBasis.ext
|
||||
intro l
|
||||
|
@ -78,11 +78,11 @@ lemma ι_normalOrder_superCommuteF_ofCrAnState_eq_zero_mul (φa φa' : 𝓕.CrAn
|
|||
Function.comp_apply, LinearMap.flip_apply, LinearMap.coe_mk, AddHom.coe_mk,
|
||||
AlgHom.toLinearMap_apply, LinearMap.zero_apply]
|
||||
rw [← mul_assoc]
|
||||
exact ι_normalOrder_superCommuteF_ofCrAnList_eq_zero φa φa' _ _
|
||||
exact ι_normalOrderF_superCommuteF_ofCrAnList_eq_zero φa φa' _ _
|
||||
rw [hf]
|
||||
simp
|
||||
|
||||
lemma ι_normalOrder_superCommuteF_ofCrAnState_ofCrAnList_eq_zero_mul (φa : 𝓕.CrAnStates)
|
||||
lemma ι_normalOrderF_superCommuteF_ofCrAnState_ofCrAnList_eq_zero_mul (φa : 𝓕.CrAnStates)
|
||||
(φs : List 𝓕.CrAnStates)
|
||||
(a b : 𝓕.CrAnAlgebra) :
|
||||
ι 𝓝ᶠ(a * [ofCrAnState φa, ofCrAnList φs]ₛca * b) = 0 := by
|
||||
|
@ -93,18 +93,18 @@ lemma ι_normalOrder_superCommuteF_ofCrAnState_ofCrAnList_eq_zero_mul (φa :
|
|||
intro n
|
||||
rw [← mul_assoc, ← mul_assoc]
|
||||
rw [mul_assoc _ _ b, ofCrAnList_singleton]
|
||||
rw [ι_normalOrder_superCommuteF_ofCrAnState_eq_zero_mul]
|
||||
rw [ι_normalOrderF_superCommuteF_ofCrAnState_eq_zero_mul]
|
||||
|
||||
lemma ι_normalOrder_superCommuteF_ofCrAnList_ofCrAnState_eq_zero_mul (φa : 𝓕.CrAnStates)
|
||||
lemma ι_normalOrderF_superCommuteF_ofCrAnList_ofCrAnState_eq_zero_mul (φa : 𝓕.CrAnStates)
|
||||
(φs : List 𝓕.CrAnStates) (a b : 𝓕.CrAnAlgebra) :
|
||||
ι 𝓝ᶠ(a * [ofCrAnList φs, ofCrAnState φa]ₛca * b) = 0 := by
|
||||
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofCrAnList_symm, ofCrAnList_singleton]
|
||||
simp only [FieldStatistic.instCommGroup.eq_1, FieldStatistic.ofList_singleton, mul_neg,
|
||||
Algebra.mul_smul_comm, neg_mul, Algebra.smul_mul_assoc, map_neg, map_smul]
|
||||
rw [ι_normalOrder_superCommuteF_ofCrAnState_ofCrAnList_eq_zero_mul]
|
||||
rw [ι_normalOrderF_superCommuteF_ofCrAnState_ofCrAnList_eq_zero_mul]
|
||||
simp
|
||||
|
||||
lemma ι_normalOrder_superCommuteF_ofCrAnList_ofCrAnList_eq_zero_mul
|
||||
lemma ι_normalOrderF_superCommuteF_ofCrAnList_ofCrAnList_eq_zero_mul
|
||||
(φs φs' : List 𝓕.CrAnStates) (a b : 𝓕.CrAnAlgebra) :
|
||||
ι 𝓝ᶠ(a * [ofCrAnList φs, ofCrAnList φs']ₛca * b) = 0 := by
|
||||
rw [superCommuteF_ofCrAnList_ofCrAnList_eq_sum, Finset.mul_sum, Finset.sum_mul]
|
||||
|
@ -113,63 +113,63 @@ lemma ι_normalOrder_superCommuteF_ofCrAnList_ofCrAnList_eq_zero_mul
|
|||
intro n
|
||||
rw [← mul_assoc, ← mul_assoc]
|
||||
rw [mul_assoc _ _ b]
|
||||
rw [ι_normalOrder_superCommuteF_ofCrAnList_ofCrAnState_eq_zero_mul]
|
||||
rw [ι_normalOrderF_superCommuteF_ofCrAnList_ofCrAnState_eq_zero_mul]
|
||||
|
||||
lemma ι_normalOrder_superCommuteF_ofCrAnList_eq_zero_mul
|
||||
lemma ι_normalOrderF_superCommuteF_ofCrAnList_eq_zero_mul
|
||||
(φs : List 𝓕.CrAnStates)
|
||||
(a b c : 𝓕.CrAnAlgebra) :
|
||||
ι 𝓝ᶠ(a * [ofCrAnList φs, c]ₛca * b) = 0 := by
|
||||
change (ι.toLinearMap ∘ₗ normalOrder ∘ₗ
|
||||
change (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
|
||||
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommuteF (ofCrAnList φs)) c = 0
|
||||
have hf : (ι.toLinearMap ∘ₗ normalOrder ∘ₗ
|
||||
have hf : (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
|
||||
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommuteF (ofCrAnList φs)) = 0 := by
|
||||
apply ofCrAnListBasis.ext
|
||||
intro φs'
|
||||
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, CrAnAlgebra.ofListBasis_eq_ofList,
|
||||
LinearMap.coe_comp, Function.comp_apply, LinearMap.flip_apply, AlgHom.toLinearMap_apply,
|
||||
LinearMap.zero_apply]
|
||||
rw [ι_normalOrder_superCommuteF_ofCrAnList_ofCrAnList_eq_zero_mul]
|
||||
rw [ι_normalOrderF_superCommuteF_ofCrAnList_ofCrAnList_eq_zero_mul]
|
||||
rw [hf]
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma ι_normalOrder_superCommuteF_eq_zero_mul
|
||||
lemma ι_normalOrderF_superCommuteF_eq_zero_mul
|
||||
(a b c d : 𝓕.CrAnAlgebra) : ι 𝓝ᶠ(a * [d, c]ₛca * b) = 0 := by
|
||||
change (ι.toLinearMap ∘ₗ normalOrder ∘ₗ
|
||||
change (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
|
||||
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommuteF.flip c) d = 0
|
||||
have hf : (ι.toLinearMap ∘ₗ normalOrder ∘ₗ
|
||||
have hf : (ι.toLinearMap ∘ₗ normalOrderF ∘ₗ
|
||||
mulLinearMap.flip b ∘ₗ mulLinearMap a ∘ₗ superCommuteF.flip c) = 0 := by
|
||||
apply ofCrAnListBasis.ext
|
||||
intro φs
|
||||
simp only [mulLinearMap, LinearMap.coe_mk, AddHom.coe_mk, CrAnAlgebra.ofListBasis_eq_ofList,
|
||||
LinearMap.coe_comp, Function.comp_apply, LinearMap.flip_apply, AlgHom.toLinearMap_apply,
|
||||
LinearMap.zero_apply]
|
||||
rw [ι_normalOrder_superCommuteF_ofCrAnList_eq_zero_mul]
|
||||
rw [ι_normalOrderF_superCommuteF_ofCrAnList_eq_zero_mul]
|
||||
rw [hf]
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma ι_normalOrder_superCommuteF_eq_zero_mul_right (b c d : 𝓕.CrAnAlgebra) :
|
||||
ι 𝓝ᶠ([d, c]ₛca * b) = 0 := by
|
||||
rw [← ι_normalOrder_superCommuteF_eq_zero_mul 1 b c d]
|
||||
rw [← ι_normalOrderF_superCommuteF_eq_zero_mul 1 b c d]
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma ι_normalOrder_superCommuteF_eq_zero_mul_left (a c d : 𝓕.CrAnAlgebra) :
|
||||
lemma ι_normalOrderF_superCommuteF_eq_zero_mul_left (a c d : 𝓕.CrAnAlgebra) :
|
||||
ι 𝓝ᶠ(a * [d, c]ₛca) = 0 := by
|
||||
rw [← ι_normalOrder_superCommuteF_eq_zero_mul a 1 c d]
|
||||
rw [← ι_normalOrderF_superCommuteF_eq_zero_mul a 1 c d]
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma ι_normalOrder_superCommuteF_eq_zero_mul_mul_right (a b1 b2 c d: 𝓕.CrAnAlgebra) :
|
||||
lemma ι_normalOrderF_superCommuteF_eq_zero_mul_mul_right (a b1 b2 c d: 𝓕.CrAnAlgebra) :
|
||||
ι 𝓝ᶠ(a * [d, c]ₛca * b1 * b2) = 0 := by
|
||||
rw [← ι_normalOrder_superCommuteF_eq_zero_mul a (b1 * b2) c d]
|
||||
rw [← ι_normalOrderF_superCommuteF_eq_zero_mul a (b1 * b2) c d]
|
||||
congr 2
|
||||
noncomm_ring
|
||||
|
||||
@[simp]
|
||||
lemma ι_normalOrder_superCommuteF_eq_zero (c d : 𝓕.CrAnAlgebra) : ι 𝓝ᶠ([d, c]ₛca) = 0 := by
|
||||
rw [← ι_normalOrder_superCommuteF_eq_zero_mul 1 1 c d]
|
||||
lemma ι_normalOrderF_superCommuteF_eq_zero (c d : 𝓕.CrAnAlgebra) : ι 𝓝ᶠ([d, c]ₛca) = 0 := by
|
||||
rw [← ι_normalOrderF_superCommuteF_eq_zero_mul 1 1 c d]
|
||||
simp
|
||||
|
||||
/-!
|
||||
|
@ -178,7 +178,7 @@ lemma ι_normalOrder_superCommuteF_eq_zero (c d : 𝓕.CrAnAlgebra) : ι 𝓝ᶠ
|
|||
|
||||
-/
|
||||
|
||||
lemma ι_normalOrder_zero_of_mem_ideal (a : 𝓕.CrAnAlgebra)
|
||||
lemma ι_normalOrderF_zero_of_mem_ideal (a : 𝓕.CrAnAlgebra)
|
||||
(h : a ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) : ι 𝓝ᶠ(a) = 0 := by
|
||||
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure] at h
|
||||
let p {k : Set 𝓕.CrAnAlgebra} (a : CrAnAlgebra 𝓕) (h : a ∈ AddSubgroup.closure k) := ι 𝓝ᶠ(a) = 0
|
||||
|
@ -210,16 +210,16 @@ lemma ι_normalOrder_zero_of_mem_ideal (a : 𝓕.CrAnAlgebra)
|
|||
· intro x hx
|
||||
simp [p]
|
||||
|
||||
lemma ι_normalOrder_eq_of_equiv (a b : 𝓕.CrAnAlgebra) (h : a ≈ b) :
|
||||
lemma ι_normalOrderF_eq_of_equiv (a b : 𝓕.CrAnAlgebra) (h : a ≈ b) :
|
||||
ι 𝓝ᶠ(a) = ι 𝓝ᶠ(b) := by
|
||||
rw [equiv_iff_sub_mem_ideal] at h
|
||||
rw [LinearMap.sub_mem_ker_iff.mp]
|
||||
simp only [LinearMap.mem_ker, ← map_sub]
|
||||
exact ι_normalOrder_zero_of_mem_ideal (a - b) h
|
||||
exact ι_normalOrderF_zero_of_mem_ideal (a - b) h
|
||||
|
||||
/-- Normal ordering on `FieldOpAlgebra`. -/
|
||||
noncomputable def normalOrder : FieldOpAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕 where
|
||||
toFun := Quotient.lift (ι.toLinearMap ∘ₗ CrAnAlgebra.normalOrder) ι_normalOrder_eq_of_equiv
|
||||
toFun := Quotient.lift (ι.toLinearMap ∘ₗ normalOrderF) ι_normalOrderF_eq_of_equiv
|
||||
map_add' x y := by
|
||||
obtain ⟨x, rfl⟩ := ι_surjective x
|
||||
obtain ⟨y, rfl⟩ := ι_surjective y
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue