refactor: Lint
This commit is contained in:
parent
89d1b1a50b
commit
f72d69e2ba
6 changed files with 84 additions and 69 deletions
|
@ -13,7 +13,7 @@ import HepLean.SpaceTime.WeylFermion.Two
|
|||
|
||||
We define the metrics for Weyl fermions, often denoted `ε` in the literature.
|
||||
These allow us to go from left-handed to alt-left-handed Weyl fermions and back,
|
||||
and from right-handed to alt-right-handed Weyl fermions and back.
|
||||
and from right-handed to alt-right-handed Weyl fermions and back.
|
||||
|
||||
-/
|
||||
|
||||
|
@ -49,7 +49,7 @@ lemma metricRaw_comm (M : SL(2,ℂ)) : metricRaw * M.1 = (M.1⁻¹)ᵀ * metricR
|
|||
mul_one, smul_empty, tail_cons, neg_smul, mul_neg, neg_cons, neg_neg, neg_zero, neg_empty,
|
||||
empty_vecMul, add_cons, empty_add_empty, empty_mul, Equiv.symm_apply_apply]
|
||||
|
||||
lemma star_comm_metricRaw (M : SL(2,ℂ)) : M.1.map star * metricRaw = metricRaw * ((M.1)⁻¹)ᴴ := by
|
||||
lemma star_comm_metricRaw (M : SL(2,ℂ)) : M.1.map star * metricRaw = metricRaw * ((M.1)⁻¹)ᴴ := by
|
||||
rw [metricRaw]
|
||||
rw [SpaceTime.SL2C.inverse_coe, eta_fin_two M.1]
|
||||
rw [SpecialLinearGroup.coe_inv, Matrix.adjugate_fin_two,
|
||||
|
@ -83,11 +83,13 @@ def leftMetric : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ leftHanded ⊗ leftHanded where
|
|||
rfl}
|
||||
comm M := by
|
||||
ext x : 2
|
||||
simp
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||||
Action.tensorUnit_ρ', CategoryTheory.Category.id_comp, Action.tensor_ρ', ModuleCat.coe_comp,
|
||||
Function.comp_apply]
|
||||
let x' : ℂ := x
|
||||
change x' • leftMetricVal =
|
||||
(TensorProduct.map (leftHanded.ρ M) (leftHanded.ρ M)) (x' • leftMetricVal)
|
||||
simp
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, _root_.map_smul]
|
||||
apply congrArg
|
||||
simp [leftMetricVal]
|
||||
erw [leftLeftToMatrix_ρ_symm]
|
||||
|
@ -114,11 +116,13 @@ def altLeftMetric : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ altLeftHanded ⊗ altLeftHande
|
|||
rfl}
|
||||
comm M := by
|
||||
ext x : 2
|
||||
simp
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||||
Action.tensorUnit_ρ', CategoryTheory.Category.id_comp, Action.tensor_ρ', ModuleCat.coe_comp,
|
||||
Function.comp_apply]
|
||||
let x' : ℂ := x
|
||||
change x' • altLeftMetricVal =
|
||||
(TensorProduct.map (altLeftHanded.ρ M) (altLeftHanded.ρ M)) (x' • altLeftMetricVal)
|
||||
simp
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, _root_.map_smul]
|
||||
apply congrArg
|
||||
simp [altLeftMetricVal]
|
||||
erw [altLeftaltLeftToMatrix_ρ_symm]
|
||||
|
@ -127,7 +131,6 @@ def altLeftMetric : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ altLeftHanded ⊗ altLeftHande
|
|||
simp only [SpecialLinearGroup.det_coe, isUnit_iff_ne_zero, ne_eq, one_ne_zero,
|
||||
not_false_eq_true, mul_nonsing_inv, mul_one]
|
||||
|
||||
|
||||
/-- The metric `ε_{dot a}_{dot a}` as an element of `(rightHanded ⊗ rightHanded).V`. -/
|
||||
def rightMetricVal : (rightHanded ⊗ rightHanded).V :=
|
||||
rightRightToMatrix.symm (- metricRaw)
|
||||
|
@ -146,7 +149,9 @@ def rightMetric : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ rightHanded ⊗ rightHanded wher
|
|||
rfl}
|
||||
comm M := by
|
||||
ext x : 2
|
||||
simp
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||||
Action.tensorUnit_ρ', CategoryTheory.Category.id_comp, Action.tensor_ρ', ModuleCat.coe_comp,
|
||||
Function.comp_apply]
|
||||
let x' : ℂ := x
|
||||
change x' • rightMetricVal =
|
||||
(TensorProduct.map (rightHanded.ρ M) (rightHanded.ρ M)) (x' • rightMetricVal)
|
||||
|
@ -186,7 +191,9 @@ def altRightMetric : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ altRightHanded ⊗ altRightHa
|
|||
rfl}
|
||||
comm M := by
|
||||
ext x : 2
|
||||
simp
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||||
Action.tensorUnit_ρ', CategoryTheory.Category.id_comp, Action.tensor_ρ', ModuleCat.coe_comp,
|
||||
Function.comp_apply]
|
||||
let x' : ℂ := x
|
||||
change x' • altRightMetricVal =
|
||||
(TensorProduct.map (altRightHanded.ρ M) (altRightHanded.ρ M)) (x' • altRightMetricVal)
|
||||
|
@ -201,7 +208,7 @@ def altRightMetric : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ altRightHanded ⊗ altRightHa
|
|||
have h1 : ((M.1).map star * (M.1)⁻¹ᴴᵀ) = 1 := by
|
||||
refine transpose_eq_one.mp ?_
|
||||
rw [@transpose_mul]
|
||||
simp
|
||||
simp only [transpose_transpose, RCLike.star_def]
|
||||
change (M.1)⁻¹ᴴ * (M.1)ᴴ = 1
|
||||
rw [← @conjTranspose_mul]
|
||||
simp
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue