refactor: Linting

This commit is contained in:
jstoobysmith 2024-10-29 11:32:04 +00:00
parent 7010a1dae2
commit f7499f8d86
5 changed files with 7 additions and 4 deletions

View file

@ -121,7 +121,7 @@ lemma perm_eq_iff_eq_perm {n m : } {c : Fin n → S.C} {c1 : Fin m → S.C}
(perm σ t).tensor = t2.tensor ↔ t.tensor =
(perm (equivToHomEq (Hom.toEquiv σ).symm (fun x => Hom.toEquiv_comp_apply σ x)) t2).tensor := by
refine Iff.intro (fun h => ?_) (fun h => ?_)
· simp [perm_tensor, ← h]
· simp only [mk_hom, perm_tensor, ← h]
change _ = (S.F.map _ ≫ S.F.map _).hom _
rw [← S.F.map_comp]
have h1 : (σ ≫ equivToHomEq (Hom.toEquiv σ).symm

View file

@ -281,6 +281,9 @@ lemma contr_contr (t : TensorTree S c) :
end
end ContrQuartet
/-- The homomorphism one must apply on swapping the order of contractions.
This is identical to `ContrQuartet.contrSwapHom` except manifestly between the correct
types. -/
def contrContrPerm {n : } {c : Fin n.succ.succ.succ.succ → S.C} {i : Fin n.succ.succ.succ.succ}
{j : Fin n.succ.succ.succ} {k : Fin n.succ.succ} {l : Fin n.succ}
(hij : c (i.succAbove j) = S.τ (c i)) (hkl : (c ∘ i.succAbove ∘ j.succAbove) (k.succAbove l) =