refactor: Linting
This commit is contained in:
parent
7010a1dae2
commit
f7499f8d86
5 changed files with 7 additions and 4 deletions
|
@ -149,7 +149,7 @@ lemma contrBispinorDown_eq_pauliCoDown_contr (p : complexContr) :
|
||||||
|
|
||||||
set_option maxRecDepth 5000 in
|
set_option maxRecDepth 5000 in
|
||||||
lemma coBispinorDown_eq_pauliContrDown_contr (p : complexCo) :
|
lemma coBispinorDown_eq_pauliContrDown_contr (p : complexCo) :
|
||||||
{coBispinorDown p | α β = pauliContrDown | μ α β ⊗ p | μ}ᵀs := by
|
{coBispinorDown p | α β = pauliContrDown | μ α β ⊗ p | μ}ᵀ := by
|
||||||
conv =>
|
conv =>
|
||||||
rhs
|
rhs
|
||||||
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_fst <|
|
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_fst <|
|
||||||
|
|
|
@ -37,7 +37,7 @@ open Fermion
|
||||||
|
|
||||||
-/
|
-/
|
||||||
|
|
||||||
/- The Pauli matrices as the complex Lorentz tensor `σ^μ^α^{dot β}`. -/
|
/-- The Pauli matrices as the complex Lorentz tensor `σ^μ^α^{dot β}`. -/
|
||||||
def pauliContr := {PauliMatrix.asConsTensor | ν α β}ᵀ.tensor
|
def pauliContr := {PauliMatrix.asConsTensor | ν α β}ᵀ.tensor
|
||||||
|
|
||||||
/-- The Pauli matrices as the complex Lorentz tensor `σ_μ^α^{dot β}`. -/
|
/-- The Pauli matrices as the complex Lorentz tensor `σ_μ^α^{dot β}`. -/
|
||||||
|
|
|
@ -62,7 +62,7 @@ def mkIso {c1 c2 : X → C} (h : c1 = c2) : mk c1 ≅ mk c2 :=
|
||||||
rfl))
|
rfl))
|
||||||
|
|
||||||
lemma mkIso_refl_hom {c : X → C} : (mkIso (by rfl : c =c)).hom = 𝟙 _ := by
|
lemma mkIso_refl_hom {c : X → C} : (mkIso (by rfl : c =c)).hom = 𝟙 _ := by
|
||||||
simp [mkIso]
|
rw [mkIso]
|
||||||
rfl
|
rfl
|
||||||
|
|
||||||
@[simp]
|
@[simp]
|
||||||
|
|
|
@ -121,7 +121,7 @@ lemma perm_eq_iff_eq_perm {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
||||||
(perm σ t).tensor = t2.tensor ↔ t.tensor =
|
(perm σ t).tensor = t2.tensor ↔ t.tensor =
|
||||||
(perm (equivToHomEq (Hom.toEquiv σ).symm (fun x => Hom.toEquiv_comp_apply σ x)) t2).tensor := by
|
(perm (equivToHomEq (Hom.toEquiv σ).symm (fun x => Hom.toEquiv_comp_apply σ x)) t2).tensor := by
|
||||||
refine Iff.intro (fun h => ?_) (fun h => ?_)
|
refine Iff.intro (fun h => ?_) (fun h => ?_)
|
||||||
· simp [perm_tensor, ← h]
|
· simp only [mk_hom, perm_tensor, ← h]
|
||||||
change _ = (S.F.map _ ≫ S.F.map _).hom _
|
change _ = (S.F.map _ ≫ S.F.map _).hom _
|
||||||
rw [← S.F.map_comp]
|
rw [← S.F.map_comp]
|
||||||
have h1 : (σ ≫ equivToHomEq (Hom.toEquiv σ).symm
|
have h1 : (σ ≫ equivToHomEq (Hom.toEquiv σ).symm
|
||||||
|
|
|
@ -281,6 +281,9 @@ lemma contr_contr (t : TensorTree S c) :
|
||||||
end
|
end
|
||||||
end ContrQuartet
|
end ContrQuartet
|
||||||
|
|
||||||
|
/-- The homomorphism one must apply on swapping the order of contractions.
|
||||||
|
This is identical to `ContrQuartet.contrSwapHom` except manifestly between the correct
|
||||||
|
types. -/
|
||||||
def contrContrPerm {n : ℕ} {c : Fin n.succ.succ.succ.succ → S.C} {i : Fin n.succ.succ.succ.succ}
|
def contrContrPerm {n : ℕ} {c : Fin n.succ.succ.succ.succ → S.C} {i : Fin n.succ.succ.succ.succ}
|
||||||
{j : Fin n.succ.succ.succ} {k : Fin n.succ.succ} {l : Fin n.succ}
|
{j : Fin n.succ.succ.succ} {k : Fin n.succ.succ} {l : Fin n.succ}
|
||||||
(hij : c (i.succAbove j) = S.τ (c i)) (hkl : (c ∘ i.succAbove ∘ j.succAbove) (k.succAbove l) =
|
(hij : c (i.succAbove j) = S.τ (c i)) (hkl : (c ∘ i.succAbove ∘ j.succAbove) (k.succAbove l) =
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue