refactor: Linting

This commit is contained in:
jstoobysmith 2024-10-29 11:32:04 +00:00
parent 7010a1dae2
commit f7499f8d86
5 changed files with 7 additions and 4 deletions

View file

@ -149,7 +149,7 @@ lemma contrBispinorDown_eq_pauliCoDown_contr (p : complexContr) :
set_option maxRecDepth 5000 in
lemma coBispinorDown_eq_pauliContrDown_contr (p : complexCo) :
{coBispinorDown p | α β = pauliContrDown | μ α β ⊗ p | μ}ᵀs := by
{coBispinorDown p | α β = pauliContrDown | μ α β ⊗ p | μ}ᵀ := by
conv =>
rhs
rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_fst <|

View file

@ -37,7 +37,7 @@ open Fermion
-/
/- The Pauli matrices as the complex Lorentz tensor `σ^μ^α^{dot β}`. -/
/-- The Pauli matrices as the complex Lorentz tensor `σ^μ^α^{dot β}`. -/
def pauliContr := {PauliMatrix.asConsTensor | ν α β}ᵀ.tensor
/-- The Pauli matrices as the complex Lorentz tensor `σ_μ^α^{dot β}`. -/

View file

@ -62,7 +62,7 @@ def mkIso {c1 c2 : X → C} (h : c1 = c2) : mk c1 ≅ mk c2 :=
rfl))
lemma mkIso_refl_hom {c : X → C} : (mkIso (by rfl : c =c)).hom = 𝟙 _ := by
simp [mkIso]
rw [mkIso]
rfl
@[simp]

View file

@ -121,7 +121,7 @@ lemma perm_eq_iff_eq_perm {n m : } {c : Fin n → S.C} {c1 : Fin m → S.C}
(perm σ t).tensor = t2.tensor ↔ t.tensor =
(perm (equivToHomEq (Hom.toEquiv σ).symm (fun x => Hom.toEquiv_comp_apply σ x)) t2).tensor := by
refine Iff.intro (fun h => ?_) (fun h => ?_)
· simp [perm_tensor, ← h]
· simp only [mk_hom, perm_tensor, ← h]
change _ = (S.F.map _ ≫ S.F.map _).hom _
rw [← S.F.map_comp]
have h1 : (σ ≫ equivToHomEq (Hom.toEquiv σ).symm

View file

@ -281,6 +281,9 @@ lemma contr_contr (t : TensorTree S c) :
end
end ContrQuartet
/-- The homomorphism one must apply on swapping the order of contractions.
This is identical to `ContrQuartet.contrSwapHom` except manifestly between the correct
types. -/
def contrContrPerm {n : } {c : Fin n.succ.succ.succ.succ → S.C} {i : Fin n.succ.succ.succ.succ}
{j : Fin n.succ.succ.succ} {k : Fin n.succ.succ} {l : Fin n.succ}
(hij : c (i.succAbove j) = S.τ (c i)) (hkl : (c ∘ i.succAbove ∘ j.succAbove) (k.succAbove l) =