refactor: Change case of type and props

This commit is contained in:
jstoobysmith 2024-06-26 11:54:02 -04:00
parent 18b83f582e
commit f7a638d32e
58 changed files with 695 additions and 696 deletions

View file

@ -19,8 +19,8 @@ open BigOperators
/-- Given a map of for a generic species, the corresponding map for charges. -/
@[simps!]
def chargesMapOfSpeciesMap {n m : } (f : (SMνSpecies n).charges →ₗ[] (SMνSpecies m).charges) :
(SMνCharges n).charges →ₗ[] (SMνCharges m).charges where
def chargesMapOfSpeciesMap {n m : } (f : (SMνSpecies n).Charges →ₗ[] (SMνSpecies m).Charges) :
(SMνCharges n).Charges →ₗ[] (SMνCharges m).Charges where
toFun S := toSpeciesEquiv.symm (fun i => (LinearMap.comp f (toSpecies i)) S)
map_add' S T := by
rw [charges_eq_toSpecies_eq]
@ -37,28 +37,28 @@ def chargesMapOfSpeciesMap {n m : } (f : (SMνSpecies n).charges →ₗ[]
rfl
lemma chargesMapOfSpeciesMap_toSpecies {n m : }
(f : (SMνSpecies n).charges →ₗ[] (SMνSpecies m).charges)
(S : (SMνCharges n).charges) (j : Fin 6) :
(f : (SMνSpecies n).Charges →ₗ[] (SMνSpecies m).Charges)
(S : (SMνCharges n).Charges) (j : Fin 6) :
toSpecies j (chargesMapOfSpeciesMap f S) = (LinearMap.comp f (toSpecies j)) S := by
erw [toSMSpecies_toSpecies_inv]
/-- The projection of the `m`-family charges onto the first `n`-family charges for species. -/
@[simps!]
def speciesFamilyProj {m n : } (h : n ≤ m) :
(SMνSpecies m).charges →ₗ[] (SMνSpecies n).charges where
(SMνSpecies m).Charges →ₗ[] (SMνSpecies n).Charges where
toFun S := S ∘ Fin.castLE h
map_add' _ _ := rfl
map_smul' _ _ := rfl
/-- The projection of the `m`-family charges onto the first `n`-family charges. -/
def familyProjection {m n : } (h : n ≤ m) : (SMνCharges m).charges →ₗ[] (SMνCharges n).charges :=
def familyProjection {m n : } (h : n ≤ m) : (SMνCharges m).Charges →ₗ[] (SMνCharges n).Charges :=
chargesMapOfSpeciesMap (speciesFamilyProj h)
/-- For species, the embedding of the `m`-family charges onto the `n`-family charges, with all
other charges zero. -/
@[simps!]
def speciesEmbed (m n : ) :
(SMνSpecies m).charges →ₗ[] (SMνSpecies n).charges where
(SMνSpecies m).Charges →ₗ[] (SMνSpecies n).Charges where
toFun S := fun i =>
if hi : i.val < m then
S ⟨i, hi⟩
@ -82,29 +82,29 @@ def speciesEmbed (m n : ) :
/-- The embedding of the `m`-family charges onto the `n`-family charges, with all
other charges zero. -/
def familyEmbedding (m n : ) : (SMνCharges m).charges →ₗ[] (SMνCharges n).charges :=
def familyEmbedding (m n : ) : (SMνCharges m).Charges →ₗ[] (SMνCharges n).Charges :=
chargesMapOfSpeciesMap (speciesEmbed m n)
/-- For species, the embedding of the `1`-family charges into the `n`-family charges in
a universal manor. -/
@[simps!]
def speciesFamilyUniversial (n : ) :
(SMνSpecies 1).charges →ₗ[] (SMνSpecies n).charges where
(SMνSpecies 1).Charges →ₗ[] (SMνSpecies n).Charges where
toFun S _ := S ⟨0, by simp⟩
map_add' S T := rfl
map_smul' a S := rfl
/-- The embedding of the `1`-family charges into the `n`-family charges in
a universal manor. -/
def familyUniversal (n : ) : (SMνCharges 1).charges →ₗ[] (SMνCharges n).charges :=
def familyUniversal (n : ) : (SMνCharges 1).Charges →ₗ[] (SMνCharges n).Charges :=
chargesMapOfSpeciesMap (speciesFamilyUniversial n)
lemma toSpecies_familyUniversal {n : } (j : Fin 6) (S : (SMνCharges 1).charges)
lemma toSpecies_familyUniversal {n : } (j : Fin 6) (S : (SMνCharges 1).Charges)
(i : Fin n) : toSpecies j (familyUniversal n S) i = toSpecies j S ⟨0, by simp⟩ := by
erw [chargesMapOfSpeciesMap_toSpecies]
rfl
lemma sum_familyUniversal {n : } (m : ) (S : (SMνCharges 1).charges) (j : Fin 6) :
lemma sum_familyUniversal {n : } (m : ) (S : (SMνCharges 1).Charges) (j : Fin 6) :
∑ i, ((fun a => a ^ m) ∘ toSpecies j (familyUniversal n S)) i =
n * (toSpecies j S ⟨0, by simp⟩) ^ m := by
simp only [SMνSpecies_numberCharges, Function.comp_apply, toSpecies_apply, Fin.zero_eta,
@ -119,12 +119,12 @@ lemma sum_familyUniversal {n : } (m : ) (S : (SMνCharges 1).charges) (j :
intro i _
erw [toSpecies_familyUniversal]
lemma sum_familyUniversal_one {n : } (S : (SMνCharges 1).charges) (j : Fin 6) :
lemma sum_familyUniversal_one {n : } (S : (SMνCharges 1).Charges) (j : Fin 6) :
∑ i, toSpecies j (familyUniversal n S) i = n * (toSpecies j S ⟨0, by simp⟩) := by
simpa using @sum_familyUniversal n 1 S j
lemma sum_familyUniversal_two {n : } (S : (SMνCharges 1).charges)
(T : (SMνCharges n).charges) (j : Fin 6) :
lemma sum_familyUniversal_two {n : } (S : (SMνCharges 1).Charges)
(T : (SMνCharges n).Charges) (j : Fin 6) :
∑ i, (toSpecies j (familyUniversal n S) i * toSpecies j T i) =
(toSpecies j S ⟨0, by simp⟩) * ∑ i, toSpecies j T i := by
simp only [SMνSpecies_numberCharges, toSpecies_apply, Fin.zero_eta, Fin.isValue]
@ -135,8 +135,8 @@ lemma sum_familyUniversal_two {n : } (S : (SMνCharges 1).charges)
erw [toSpecies_familyUniversal]
rfl
lemma sum_familyUniversal_three {n : } (S : (SMνCharges 1).charges)
(T L : (SMνCharges n).charges) (j : Fin 6) :
lemma sum_familyUniversal_three {n : } (S : (SMνCharges 1).Charges)
(T L : (SMνCharges n).Charges) (j : Fin 6) :
∑ i, (toSpecies j (familyUniversal n S) i * toSpecies j T i * toSpecies j L i) =
(toSpecies j S ⟨0, by simp⟩) * ∑ i, toSpecies j T i * toSpecies j L i := by
simp only [SMνSpecies_numberCharges, toSpecies_apply, Fin.zero_eta, Fin.isValue]
@ -148,7 +148,7 @@ lemma sum_familyUniversal_three {n : } (S : (SMνCharges 1).charges)
simp only [SMνSpecies_numberCharges, Fin.zero_eta, Fin.isValue, toSpecies_apply]
ring
lemma familyUniversal_accGrav (S : (SMνCharges 1).charges) :
lemma familyUniversal_accGrav (S : (SMνCharges 1).Charges) :
accGrav (familyUniversal n S) = n * (accGrav S) := by
rw [accGrav_decomp, accGrav_decomp]
repeat rw [sum_familyUniversal_one]
@ -156,7 +156,7 @@ lemma familyUniversal_accGrav (S : (SMνCharges 1).charges) :
Finset.univ_unique, Fin.default_eq_zero, Finset.sum_singleton]
ring
lemma familyUniversal_accSU2 (S : (SMνCharges 1).charges) :
lemma familyUniversal_accSU2 (S : (SMνCharges 1).Charges) :
accSU2 (familyUniversal n S) = n * (accSU2 S) := by
rw [accSU2_decomp, accSU2_decomp]
repeat rw [sum_familyUniversal_one]
@ -164,7 +164,7 @@ lemma familyUniversal_accSU2 (S : (SMνCharges 1).charges) :
Finset.univ_unique, Fin.default_eq_zero, Finset.sum_singleton]
ring
lemma familyUniversal_accSU3 (S : (SMνCharges 1).charges) :
lemma familyUniversal_accSU3 (S : (SMνCharges 1).Charges) :
accSU3 (familyUniversal n S) = n * (accSU3 S) := by
rw [accSU3_decomp, accSU3_decomp]
repeat rw [sum_familyUniversal_one]
@ -172,7 +172,7 @@ lemma familyUniversal_accSU3 (S : (SMνCharges 1).charges) :
Finset.univ_unique, Fin.default_eq_zero, Finset.sum_singleton]
ring
lemma familyUniversal_accYY (S : (SMνCharges 1).charges) :
lemma familyUniversal_accYY (S : (SMνCharges 1).Charges) :
accYY (familyUniversal n S) = n * (accYY S) := by
rw [accYY_decomp, accYY_decomp]
repeat rw [sum_familyUniversal_one]
@ -180,7 +180,7 @@ lemma familyUniversal_accYY (S : (SMνCharges 1).charges) :
Finset.univ_unique, Fin.default_eq_zero, Finset.sum_singleton]
ring
lemma familyUniversal_quadBiLin (S : (SMνCharges 1).charges) (T : (SMνCharges n).charges) :
lemma familyUniversal_quadBiLin (S : (SMνCharges 1).Charges) (T : (SMνCharges n).Charges) :
quadBiLin (familyUniversal n S) T =
S (0 : Fin 6) * ∑ i, Q T i - 2 * S (1 : Fin 6) * ∑ i, U T i + S (2 : Fin 6) *∑ i, D T i -
S (3 : Fin 6) * ∑ i, L T i + S (4 : Fin 6) * ∑ i, E T i := by
@ -191,7 +191,7 @@ lemma familyUniversal_quadBiLin (S : (SMνCharges 1).charges) (T : (SMνCharges
sub_right_inj]
ring
lemma familyUniversal_accQuad (S : (SMνCharges 1).charges) :
lemma familyUniversal_accQuad (S : (SMνCharges 1).Charges) :
accQuad (familyUniversal n S) = n * (accQuad S) := by
rw [accQuad_decomp]
repeat erw [sum_familyUniversal]
@ -200,7 +200,7 @@ lemma familyUniversal_accQuad (S : (SMνCharges 1).charges) :
Finset.univ_unique, Fin.default_eq_zero, Finset.sum_singleton]
ring
lemma familyUniversal_cubeTriLin (S : (SMνCharges 1).charges) (T R : (SMνCharges n).charges) :
lemma familyUniversal_cubeTriLin (S : (SMνCharges 1).Charges) (T R : (SMνCharges n).Charges) :
cubeTriLin (familyUniversal n S) T R = 6 * S (0 : Fin 6) * ∑ i, (Q T i * Q R i) +
3 * S (1 : Fin 6) * ∑ i, (U T i * U R i) + 3 * S (2 : Fin 6) * ∑ i, (D T i * D R i)
+ 2 * S (3 : Fin 6) * ∑ i, (L T i * L R i) +
@ -211,7 +211,7 @@ lemma familyUniversal_cubeTriLin (S : (SMνCharges 1).charges) (T R : (SMνCharg
simp only [Fin.isValue, SMνSpecies_numberCharges, toSpecies_apply, add_left_inj]
ring
lemma familyUniversal_cubeTriLin' (S T : (SMνCharges 1).charges) (R : (SMνCharges n).charges) :
lemma familyUniversal_cubeTriLin' (S T : (SMνCharges 1).Charges) (R : (SMνCharges n).Charges) :
cubeTriLin (familyUniversal n S) (familyUniversal n T) R =
6 * S (0 : Fin 6) * T (0 : Fin 6) * ∑ i, Q R i +
3 * S (1 : Fin 6) * T (1 : Fin 6) * ∑ i, U R i
@ -224,7 +224,7 @@ lemma familyUniversal_cubeTriLin' (S T : (SMνCharges 1).charges) (R : (SMνChar
simp only [Fin.isValue, SMνSpecies_numberCharges, toSpecies_apply]
ring
lemma familyUniversal_accCube (S : (SMνCharges 1).charges) :
lemma familyUniversal_accCube (S : (SMνCharges 1).Charges) :
accCube (familyUniversal n S) = n * (accCube S) := by
rw [accCube_decomp]
repeat erw [sum_familyUniversal]