refactor: Change case of type and props
This commit is contained in:
parent
18b83f582e
commit
f7a638d32e
58 changed files with 695 additions and 696 deletions
|
@ -19,8 +19,8 @@ open BigOperators
|
|||
|
||||
/-- Given a map of for a generic species, the corresponding map for charges. -/
|
||||
@[simps!]
|
||||
def chargesMapOfSpeciesMap {n m : ℕ} (f : (SMνSpecies n).charges →ₗ[ℚ] (SMνSpecies m).charges) :
|
||||
(SMνCharges n).charges →ₗ[ℚ] (SMνCharges m).charges where
|
||||
def chargesMapOfSpeciesMap {n m : ℕ} (f : (SMνSpecies n).Charges →ₗ[ℚ] (SMνSpecies m).Charges) :
|
||||
(SMνCharges n).Charges →ₗ[ℚ] (SMνCharges m).Charges where
|
||||
toFun S := toSpeciesEquiv.symm (fun i => (LinearMap.comp f (toSpecies i)) S)
|
||||
map_add' S T := by
|
||||
rw [charges_eq_toSpecies_eq]
|
||||
|
@ -37,28 +37,28 @@ def chargesMapOfSpeciesMap {n m : ℕ} (f : (SMνSpecies n).charges →ₗ[ℚ]
|
|||
rfl
|
||||
|
||||
lemma chargesMapOfSpeciesMap_toSpecies {n m : ℕ}
|
||||
(f : (SMνSpecies n).charges →ₗ[ℚ] (SMνSpecies m).charges)
|
||||
(S : (SMνCharges n).charges) (j : Fin 6) :
|
||||
(f : (SMνSpecies n).Charges →ₗ[ℚ] (SMνSpecies m).Charges)
|
||||
(S : (SMνCharges n).Charges) (j : Fin 6) :
|
||||
toSpecies j (chargesMapOfSpeciesMap f S) = (LinearMap.comp f (toSpecies j)) S := by
|
||||
erw [toSMSpecies_toSpecies_inv]
|
||||
|
||||
/-- The projection of the `m`-family charges onto the first `n`-family charges for species. -/
|
||||
@[simps!]
|
||||
def speciesFamilyProj {m n : ℕ} (h : n ≤ m) :
|
||||
(SMνSpecies m).charges →ₗ[ℚ] (SMνSpecies n).charges where
|
||||
(SMνSpecies m).Charges →ₗ[ℚ] (SMνSpecies n).Charges where
|
||||
toFun S := S ∘ Fin.castLE h
|
||||
map_add' _ _ := rfl
|
||||
map_smul' _ _ := rfl
|
||||
|
||||
/-- The projection of the `m`-family charges onto the first `n`-family charges. -/
|
||||
def familyProjection {m n : ℕ} (h : n ≤ m) : (SMνCharges m).charges →ₗ[ℚ] (SMνCharges n).charges :=
|
||||
def familyProjection {m n : ℕ} (h : n ≤ m) : (SMνCharges m).Charges →ₗ[ℚ] (SMνCharges n).Charges :=
|
||||
chargesMapOfSpeciesMap (speciesFamilyProj h)
|
||||
|
||||
/-- For species, the embedding of the `m`-family charges onto the `n`-family charges, with all
|
||||
other charges zero. -/
|
||||
@[simps!]
|
||||
def speciesEmbed (m n : ℕ) :
|
||||
(SMνSpecies m).charges →ₗ[ℚ] (SMνSpecies n).charges where
|
||||
(SMνSpecies m).Charges →ₗ[ℚ] (SMνSpecies n).Charges where
|
||||
toFun S := fun i =>
|
||||
if hi : i.val < m then
|
||||
S ⟨i, hi⟩
|
||||
|
@ -82,29 +82,29 @@ def speciesEmbed (m n : ℕ) :
|
|||
|
||||
/-- The embedding of the `m`-family charges onto the `n`-family charges, with all
|
||||
other charges zero. -/
|
||||
def familyEmbedding (m n : ℕ) : (SMνCharges m).charges →ₗ[ℚ] (SMνCharges n).charges :=
|
||||
def familyEmbedding (m n : ℕ) : (SMνCharges m).Charges →ₗ[ℚ] (SMνCharges n).Charges :=
|
||||
chargesMapOfSpeciesMap (speciesEmbed m n)
|
||||
|
||||
/-- For species, the embedding of the `1`-family charges into the `n`-family charges in
|
||||
a universal manor. -/
|
||||
@[simps!]
|
||||
def speciesFamilyUniversial (n : ℕ) :
|
||||
(SMνSpecies 1).charges →ₗ[ℚ] (SMνSpecies n).charges where
|
||||
(SMνSpecies 1).Charges →ₗ[ℚ] (SMνSpecies n).Charges where
|
||||
toFun S _ := S ⟨0, by simp⟩
|
||||
map_add' S T := rfl
|
||||
map_smul' a S := rfl
|
||||
|
||||
/-- The embedding of the `1`-family charges into the `n`-family charges in
|
||||
a universal manor. -/
|
||||
def familyUniversal (n : ℕ) : (SMνCharges 1).charges →ₗ[ℚ] (SMνCharges n).charges :=
|
||||
def familyUniversal (n : ℕ) : (SMνCharges 1).Charges →ₗ[ℚ] (SMνCharges n).Charges :=
|
||||
chargesMapOfSpeciesMap (speciesFamilyUniversial n)
|
||||
|
||||
lemma toSpecies_familyUniversal {n : ℕ} (j : Fin 6) (S : (SMνCharges 1).charges)
|
||||
lemma toSpecies_familyUniversal {n : ℕ} (j : Fin 6) (S : (SMνCharges 1).Charges)
|
||||
(i : Fin n) : toSpecies j (familyUniversal n S) i = toSpecies j S ⟨0, by simp⟩ := by
|
||||
erw [chargesMapOfSpeciesMap_toSpecies]
|
||||
rfl
|
||||
|
||||
lemma sum_familyUniversal {n : ℕ} (m : ℕ) (S : (SMνCharges 1).charges) (j : Fin 6) :
|
||||
lemma sum_familyUniversal {n : ℕ} (m : ℕ) (S : (SMνCharges 1).Charges) (j : Fin 6) :
|
||||
∑ i, ((fun a => a ^ m) ∘ toSpecies j (familyUniversal n S)) i =
|
||||
n * (toSpecies j S ⟨0, by simp⟩) ^ m := by
|
||||
simp only [SMνSpecies_numberCharges, Function.comp_apply, toSpecies_apply, Fin.zero_eta,
|
||||
|
@ -119,12 +119,12 @@ lemma sum_familyUniversal {n : ℕ} (m : ℕ) (S : (SMνCharges 1).charges) (j :
|
|||
intro i _
|
||||
erw [toSpecies_familyUniversal]
|
||||
|
||||
lemma sum_familyUniversal_one {n : ℕ} (S : (SMνCharges 1).charges) (j : Fin 6) :
|
||||
lemma sum_familyUniversal_one {n : ℕ} (S : (SMνCharges 1).Charges) (j : Fin 6) :
|
||||
∑ i, toSpecies j (familyUniversal n S) i = n * (toSpecies j S ⟨0, by simp⟩) := by
|
||||
simpa using @sum_familyUniversal n 1 S j
|
||||
|
||||
lemma sum_familyUniversal_two {n : ℕ} (S : (SMνCharges 1).charges)
|
||||
(T : (SMνCharges n).charges) (j : Fin 6) :
|
||||
lemma sum_familyUniversal_two {n : ℕ} (S : (SMνCharges 1).Charges)
|
||||
(T : (SMνCharges n).Charges) (j : Fin 6) :
|
||||
∑ i, (toSpecies j (familyUniversal n S) i * toSpecies j T i) =
|
||||
(toSpecies j S ⟨0, by simp⟩) * ∑ i, toSpecies j T i := by
|
||||
simp only [SMνSpecies_numberCharges, toSpecies_apply, Fin.zero_eta, Fin.isValue]
|
||||
|
@ -135,8 +135,8 @@ lemma sum_familyUniversal_two {n : ℕ} (S : (SMνCharges 1).charges)
|
|||
erw [toSpecies_familyUniversal]
|
||||
rfl
|
||||
|
||||
lemma sum_familyUniversal_three {n : ℕ} (S : (SMνCharges 1).charges)
|
||||
(T L : (SMνCharges n).charges) (j : Fin 6) :
|
||||
lemma sum_familyUniversal_three {n : ℕ} (S : (SMνCharges 1).Charges)
|
||||
(T L : (SMνCharges n).Charges) (j : Fin 6) :
|
||||
∑ i, (toSpecies j (familyUniversal n S) i * toSpecies j T i * toSpecies j L i) =
|
||||
(toSpecies j S ⟨0, by simp⟩) * ∑ i, toSpecies j T i * toSpecies j L i := by
|
||||
simp only [SMνSpecies_numberCharges, toSpecies_apply, Fin.zero_eta, Fin.isValue]
|
||||
|
@ -148,7 +148,7 @@ lemma sum_familyUniversal_three {n : ℕ} (S : (SMνCharges 1).charges)
|
|||
simp only [SMνSpecies_numberCharges, Fin.zero_eta, Fin.isValue, toSpecies_apply]
|
||||
ring
|
||||
|
||||
lemma familyUniversal_accGrav (S : (SMνCharges 1).charges) :
|
||||
lemma familyUniversal_accGrav (S : (SMνCharges 1).Charges) :
|
||||
accGrav (familyUniversal n S) = n * (accGrav S) := by
|
||||
rw [accGrav_decomp, accGrav_decomp]
|
||||
repeat rw [sum_familyUniversal_one]
|
||||
|
@ -156,7 +156,7 @@ lemma familyUniversal_accGrav (S : (SMνCharges 1).charges) :
|
|||
Finset.univ_unique, Fin.default_eq_zero, Finset.sum_singleton]
|
||||
ring
|
||||
|
||||
lemma familyUniversal_accSU2 (S : (SMνCharges 1).charges) :
|
||||
lemma familyUniversal_accSU2 (S : (SMνCharges 1).Charges) :
|
||||
accSU2 (familyUniversal n S) = n * (accSU2 S) := by
|
||||
rw [accSU2_decomp, accSU2_decomp]
|
||||
repeat rw [sum_familyUniversal_one]
|
||||
|
@ -164,7 +164,7 @@ lemma familyUniversal_accSU2 (S : (SMνCharges 1).charges) :
|
|||
Finset.univ_unique, Fin.default_eq_zero, Finset.sum_singleton]
|
||||
ring
|
||||
|
||||
lemma familyUniversal_accSU3 (S : (SMνCharges 1).charges) :
|
||||
lemma familyUniversal_accSU3 (S : (SMνCharges 1).Charges) :
|
||||
accSU3 (familyUniversal n S) = n * (accSU3 S) := by
|
||||
rw [accSU3_decomp, accSU3_decomp]
|
||||
repeat rw [sum_familyUniversal_one]
|
||||
|
@ -172,7 +172,7 @@ lemma familyUniversal_accSU3 (S : (SMνCharges 1).charges) :
|
|||
Finset.univ_unique, Fin.default_eq_zero, Finset.sum_singleton]
|
||||
ring
|
||||
|
||||
lemma familyUniversal_accYY (S : (SMνCharges 1).charges) :
|
||||
lemma familyUniversal_accYY (S : (SMνCharges 1).Charges) :
|
||||
accYY (familyUniversal n S) = n * (accYY S) := by
|
||||
rw [accYY_decomp, accYY_decomp]
|
||||
repeat rw [sum_familyUniversal_one]
|
||||
|
@ -180,7 +180,7 @@ lemma familyUniversal_accYY (S : (SMνCharges 1).charges) :
|
|||
Finset.univ_unique, Fin.default_eq_zero, Finset.sum_singleton]
|
||||
ring
|
||||
|
||||
lemma familyUniversal_quadBiLin (S : (SMνCharges 1).charges) (T : (SMνCharges n).charges) :
|
||||
lemma familyUniversal_quadBiLin (S : (SMνCharges 1).Charges) (T : (SMνCharges n).Charges) :
|
||||
quadBiLin (familyUniversal n S) T =
|
||||
S (0 : Fin 6) * ∑ i, Q T i - 2 * S (1 : Fin 6) * ∑ i, U T i + S (2 : Fin 6) *∑ i, D T i -
|
||||
S (3 : Fin 6) * ∑ i, L T i + S (4 : Fin 6) * ∑ i, E T i := by
|
||||
|
@ -191,7 +191,7 @@ lemma familyUniversal_quadBiLin (S : (SMνCharges 1).charges) (T : (SMνCharges
|
|||
sub_right_inj]
|
||||
ring
|
||||
|
||||
lemma familyUniversal_accQuad (S : (SMνCharges 1).charges) :
|
||||
lemma familyUniversal_accQuad (S : (SMνCharges 1).Charges) :
|
||||
accQuad (familyUniversal n S) = n * (accQuad S) := by
|
||||
rw [accQuad_decomp]
|
||||
repeat erw [sum_familyUniversal]
|
||||
|
@ -200,7 +200,7 @@ lemma familyUniversal_accQuad (S : (SMνCharges 1).charges) :
|
|||
Finset.univ_unique, Fin.default_eq_zero, Finset.sum_singleton]
|
||||
ring
|
||||
|
||||
lemma familyUniversal_cubeTriLin (S : (SMνCharges 1).charges) (T R : (SMνCharges n).charges) :
|
||||
lemma familyUniversal_cubeTriLin (S : (SMνCharges 1).Charges) (T R : (SMνCharges n).Charges) :
|
||||
cubeTriLin (familyUniversal n S) T R = 6 * S (0 : Fin 6) * ∑ i, (Q T i * Q R i) +
|
||||
3 * S (1 : Fin 6) * ∑ i, (U T i * U R i) + 3 * S (2 : Fin 6) * ∑ i, (D T i * D R i)
|
||||
+ 2 * S (3 : Fin 6) * ∑ i, (L T i * L R i) +
|
||||
|
@ -211,7 +211,7 @@ lemma familyUniversal_cubeTriLin (S : (SMνCharges 1).charges) (T R : (SMνCharg
|
|||
simp only [Fin.isValue, SMνSpecies_numberCharges, toSpecies_apply, add_left_inj]
|
||||
ring
|
||||
|
||||
lemma familyUniversal_cubeTriLin' (S T : (SMνCharges 1).charges) (R : (SMνCharges n).charges) :
|
||||
lemma familyUniversal_cubeTriLin' (S T : (SMνCharges 1).Charges) (R : (SMνCharges n).Charges) :
|
||||
cubeTriLin (familyUniversal n S) (familyUniversal n T) R =
|
||||
6 * S (0 : Fin 6) * T (0 : Fin 6) * ∑ i, Q R i +
|
||||
3 * S (1 : Fin 6) * T (1 : Fin 6) * ∑ i, U R i
|
||||
|
@ -224,7 +224,7 @@ lemma familyUniversal_cubeTriLin' (S T : (SMνCharges 1).charges) (R : (SMνChar
|
|||
simp only [Fin.isValue, SMνSpecies_numberCharges, toSpecies_apply]
|
||||
ring
|
||||
|
||||
lemma familyUniversal_accCube (S : (SMνCharges 1).charges) :
|
||||
lemma familyUniversal_accCube (S : (SMνCharges 1).Charges) :
|
||||
accCube (familyUniversal n S) = n * (accCube S) := by
|
||||
rw [accCube_decomp]
|
||||
repeat erw [sum_familyUniversal]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue