refactor: Change case of type and props
This commit is contained in:
parent
18b83f582e
commit
f7a638d32e
58 changed files with 695 additions and 696 deletions
|
@ -26,7 +26,7 @@ open Complex
|
|||
open ComplexConjugate
|
||||
|
||||
/-- The global gauge group of the standard model. TODO: Generalize to quotient. -/
|
||||
abbrev gaugeGroup : Type :=
|
||||
abbrev GaugeGroup : Type :=
|
||||
specialUnitaryGroup (Fin 3) ℂ × specialUnitaryGroup (Fin 2) ℂ × unitary ℂ
|
||||
|
||||
end StandardModel
|
||||
|
|
|
@ -34,85 +34,85 @@ open Manifold
|
|||
open Matrix
|
||||
open Complex
|
||||
open ComplexConjugate
|
||||
open spaceTime
|
||||
open SpaceTime
|
||||
|
||||
/-- The trivial vector bundle 𝓡² × ℂ². (TODO: Make associated bundle.) -/
|
||||
abbrev higgsBundle := Bundle.Trivial spaceTime higgsVec
|
||||
abbrev HiggsBundle := Bundle.Trivial SpaceTime HiggsVec
|
||||
|
||||
instance : SmoothVectorBundle higgsVec higgsBundle spaceTime.asSmoothManifold :=
|
||||
Bundle.Trivial.smoothVectorBundle higgsVec 𝓘(ℝ, spaceTime)
|
||||
instance : SmoothVectorBundle HiggsVec HiggsBundle SpaceTime.asSmoothManifold :=
|
||||
Bundle.Trivial.smoothVectorBundle HiggsVec 𝓘(ℝ, SpaceTime)
|
||||
|
||||
/-- A higgs field is a smooth section of the higgs bundle. -/
|
||||
abbrev higgsField : Type := SmoothSection spaceTime.asSmoothManifold higgsVec higgsBundle
|
||||
abbrev HiggsField : Type := SmoothSection SpaceTime.asSmoothManifold HiggsVec HiggsBundle
|
||||
|
||||
instance : NormedAddCommGroup (Fin 2 → ℂ) := by
|
||||
exact Pi.normedAddCommGroup
|
||||
|
||||
/-- Given a vector `ℂ²` the constant higgs field with value equal to that
|
||||
section. -/
|
||||
noncomputable def higgsVec.toField (φ : higgsVec) : higgsField where
|
||||
noncomputable def HiggsVec.toField (φ : HiggsVec) : HiggsField where
|
||||
toFun := fun _ ↦ φ
|
||||
contMDiff_toFun := by
|
||||
intro x
|
||||
rw [Bundle.contMDiffAt_section]
|
||||
exact smoothAt_const
|
||||
|
||||
namespace higgsField
|
||||
namespace HiggsField
|
||||
open Complex Real
|
||||
|
||||
/-- Given a `higgsField`, the corresponding map from `spaceTime` to `higgsVec`. -/
|
||||
def toHiggsVec (φ : higgsField) : spaceTime → higgsVec := φ
|
||||
def toHiggsVec (φ : HiggsField) : SpaceTime → HiggsVec := φ
|
||||
|
||||
lemma toHiggsVec_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, higgsVec) φ.toHiggsVec := by
|
||||
lemma toHiggsVec_smooth (φ : HiggsField) : Smooth 𝓘(ℝ, SpaceTime) 𝓘(ℝ, HiggsVec) φ.toHiggsVec := by
|
||||
intro x0
|
||||
have h1 := φ.contMDiff x0
|
||||
rw [Bundle.contMDiffAt_section] at h1
|
||||
have h2 :
|
||||
(fun x => ((trivializationAt higgsVec (Bundle.Trivial spaceTime higgsVec) x0)
|
||||
(fun x => ((trivializationAt HiggsVec (Bundle.Trivial SpaceTime HiggsVec) x0)
|
||||
{ proj := x, snd := φ x }).2) = φ := by
|
||||
rfl
|
||||
simp only [h2] at h1
|
||||
exact h1
|
||||
|
||||
lemma toField_toHiggsVec_apply (φ : higgsField) (x : spaceTime) :
|
||||
lemma toField_toHiggsVec_apply (φ : HiggsField) (x : SpaceTime) :
|
||||
(φ.toHiggsVec x).toField x = φ x := rfl
|
||||
|
||||
lemma higgsVecToFin2ℂ_toHiggsVec (φ : higgsField) :
|
||||
lemma higgsVecToFin2ℂ_toHiggsVec (φ : HiggsField) :
|
||||
higgsVecToFin2ℂ ∘ φ.toHiggsVec = φ := rfl
|
||||
|
||||
lemma toVec_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, Fin 2 → ℂ) φ :=
|
||||
lemma toVec_smooth (φ : HiggsField) : Smooth 𝓘(ℝ, SpaceTime) 𝓘(ℝ, Fin 2 → ℂ) φ :=
|
||||
smooth_higgsVecToFin2ℂ.comp φ.toHiggsVec_smooth
|
||||
|
||||
lemma apply_smooth (φ : higgsField) :
|
||||
∀ i, Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℂ) (fun (x : spaceTime) => (φ x i)) :=
|
||||
lemma apply_smooth (φ : HiggsField) :
|
||||
∀ i, Smooth 𝓘(ℝ, SpaceTime) 𝓘(ℝ, ℂ) (fun (x : SpaceTime) => (φ x i)) :=
|
||||
(smooth_pi_space).mp (φ.toVec_smooth)
|
||||
|
||||
lemma apply_re_smooth (φ : higgsField) (i : Fin 2):
|
||||
Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℝ) (reCLM ∘ (fun (x : spaceTime) => (φ x i))) :=
|
||||
lemma apply_re_smooth (φ : HiggsField) (i : Fin 2):
|
||||
Smooth 𝓘(ℝ, SpaceTime) 𝓘(ℝ, ℝ) (reCLM ∘ (fun (x : SpaceTime) => (φ x i))) :=
|
||||
(ContinuousLinearMap.smooth reCLM).comp (φ.apply_smooth i)
|
||||
|
||||
lemma apply_im_smooth (φ : higgsField) (i : Fin 2):
|
||||
Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℝ) (imCLM ∘ (fun (x : spaceTime) => (φ x i))) :=
|
||||
lemma apply_im_smooth (φ : HiggsField) (i : Fin 2):
|
||||
Smooth 𝓘(ℝ, SpaceTime) 𝓘(ℝ, ℝ) (imCLM ∘ (fun (x : SpaceTime) => (φ x i))) :=
|
||||
(ContinuousLinearMap.smooth imCLM).comp (φ.apply_smooth i)
|
||||
|
||||
/-- Given two `higgsField`, the map `spaceTime → ℂ` obtained by taking their inner product. -/
|
||||
def innerProd (φ1 φ2 : higgsField) : spaceTime → ℂ := fun x => ⟪φ1 x, φ2 x⟫_ℂ
|
||||
def innerProd (φ1 φ2 : HiggsField) : SpaceTime → ℂ := fun x => ⟪φ1 x, φ2 x⟫_ℂ
|
||||
|
||||
|
||||
/-- Given a `higgsField`, the map `spaceTime → ℝ` obtained by taking the square norm of the
|
||||
higgs vector. -/
|
||||
@[simp]
|
||||
def normSq (φ : higgsField) : spaceTime → ℝ := fun x => ( ‖φ x‖ ^ 2)
|
||||
def normSq (φ : HiggsField) : SpaceTime → ℝ := fun x => ( ‖φ x‖ ^ 2)
|
||||
|
||||
lemma toHiggsVec_norm (φ : higgsField) (x : spaceTime) :
|
||||
lemma toHiggsVec_norm (φ : HiggsField) (x : SpaceTime) :
|
||||
‖φ x‖ = ‖φ.toHiggsVec x‖ := rfl
|
||||
|
||||
lemma normSq_expand (φ : higgsField) :
|
||||
lemma normSq_expand (φ : HiggsField) :
|
||||
φ.normSq = fun x => (conj (φ x 0) * (φ x 0) + conj (φ x 1) * (φ x 1) ).re := by
|
||||
funext x
|
||||
simp [normSq, add_re, mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add, @norm_sq_eq_inner ℂ]
|
||||
|
||||
lemma normSq_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℝ) φ.normSq := by
|
||||
lemma normSq_smooth (φ : HiggsField) : Smooth 𝓘(ℝ, SpaceTime) 𝓘(ℝ, ℝ) φ.normSq := by
|
||||
rw [normSq_expand]
|
||||
refine Smooth.add ?_ ?_
|
||||
simp only [mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add]
|
||||
|
@ -132,50 +132,50 @@ lemma normSq_smooth (φ : higgsField) : Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ,
|
|||
exact φ.apply_im_smooth 1
|
||||
exact φ.apply_im_smooth 1
|
||||
|
||||
lemma normSq_nonneg (φ : higgsField) (x : spaceTime) : 0 ≤ φ.normSq x := by
|
||||
lemma normSq_nonneg (φ : HiggsField) (x : SpaceTime) : 0 ≤ φ.normSq x := by
|
||||
simp [normSq, ge_iff_le, norm_nonneg, pow_nonneg]
|
||||
|
||||
lemma normSq_zero (φ : higgsField) (x : spaceTime) : φ.normSq x = 0 ↔ φ x = 0 := by
|
||||
lemma normSq_zero (φ : HiggsField) (x : SpaceTime) : φ.normSq x = 0 ↔ φ x = 0 := by
|
||||
simp [normSq, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff, norm_eq_zero]
|
||||
|
||||
/-- The Higgs potential of the form `- μ² * |φ|² + λ * |φ|⁴`. -/
|
||||
@[simp]
|
||||
def potential (φ : higgsField) (μSq lambda : ℝ ) (x : spaceTime) : ℝ :=
|
||||
def potential (φ : HiggsField) (μSq lambda : ℝ ) (x : SpaceTime) : ℝ :=
|
||||
- μSq * φ.normSq x + lambda * φ.normSq x * φ.normSq x
|
||||
|
||||
lemma potential_smooth (φ : higgsField) (μSq lambda : ℝ) :
|
||||
Smooth 𝓘(ℝ, spaceTime) 𝓘(ℝ, ℝ) (fun x => φ.potential μSq lambda x) := by
|
||||
lemma potential_smooth (φ : HiggsField) (μSq lambda : ℝ) :
|
||||
Smooth 𝓘(ℝ, SpaceTime) 𝓘(ℝ, ℝ) (fun x => φ.potential μSq lambda x) := by
|
||||
simp only [potential, normSq, neg_mul]
|
||||
exact (smooth_const.smul φ.normSq_smooth).neg.add
|
||||
((smooth_const.smul φ.normSq_smooth).smul φ.normSq_smooth)
|
||||
|
||||
lemma potential_apply (φ : higgsField) (μSq lambda : ℝ) (x : spaceTime) :
|
||||
(φ.potential μSq lambda) x = higgsVec.potential μSq lambda (φ.toHiggsVec x) := by
|
||||
simp [higgsVec.potential, toHiggsVec_norm]
|
||||
lemma potential_apply (φ : HiggsField) (μSq lambda : ℝ) (x : SpaceTime) :
|
||||
(φ.potential μSq lambda) x = HiggsVec.potential μSq lambda (φ.toHiggsVec x) := by
|
||||
simp [HiggsVec.potential, toHiggsVec_norm]
|
||||
ring
|
||||
|
||||
|
||||
/-- A higgs field is constant if it is equal for all `x` `y` in `spaceTime`. -/
|
||||
def isConst (Φ : higgsField) : Prop := ∀ x y, Φ x = Φ y
|
||||
def IsConst (Φ : HiggsField) : Prop := ∀ x y, Φ x = Φ y
|
||||
|
||||
lemma isConst_of_higgsVec (φ : higgsVec) : φ.toField.isConst := by
|
||||
lemma isConst_of_higgsVec (φ : HiggsVec) : φ.toField.IsConst := by
|
||||
intro x _
|
||||
simp [higgsVec.toField]
|
||||
simp [HiggsVec.toField]
|
||||
|
||||
lemma isConst_iff_of_higgsVec (Φ : higgsField) : Φ.isConst ↔ ∃ (φ : higgsVec), Φ = φ.toField :=
|
||||
lemma isConst_iff_of_higgsVec (Φ : HiggsField) : Φ.IsConst ↔ ∃ (φ : HiggsVec), Φ = φ.toField :=
|
||||
Iff.intro (fun h ↦ ⟨Φ 0, by ext x y; rw [← h x 0]; rfl⟩) (fun ⟨φ, hφ⟩ x y ↦ by subst hφ; rfl)
|
||||
|
||||
lemma normSq_of_higgsVec (φ : higgsVec) : φ.toField.normSq = fun x => (norm φ) ^ 2 := by
|
||||
lemma normSq_of_higgsVec (φ : HiggsVec) : φ.toField.normSq = fun x => (norm φ) ^ 2 := by
|
||||
funext x
|
||||
simp [normSq, higgsVec.toField]
|
||||
simp [normSq, HiggsVec.toField]
|
||||
|
||||
lemma potential_of_higgsVec (φ : higgsVec) (μSq lambda : ℝ) :
|
||||
φ.toField.potential μSq lambda = fun _ => higgsVec.potential μSq lambda φ := by
|
||||
simp [higgsVec.potential]
|
||||
lemma potential_of_higgsVec (φ : HiggsVec) (μSq lambda : ℝ) :
|
||||
φ.toField.potential μSq lambda = fun _ => HiggsVec.potential μSq lambda φ := by
|
||||
simp [HiggsVec.potential]
|
||||
unfold potential
|
||||
rw [normSq_of_higgsVec]
|
||||
ring_nf
|
||||
|
||||
end higgsField
|
||||
end HiggsField
|
||||
end
|
||||
end StandardModel
|
||||
|
|
|
@ -37,25 +37,24 @@ open Complex
|
|||
open ComplexConjugate
|
||||
|
||||
/-- The complex vector space in which the Higgs field takes values. -/
|
||||
abbrev higgsVec := EuclideanSpace ℂ (Fin 2)
|
||||
abbrev HiggsVec := EuclideanSpace ℂ (Fin 2)
|
||||
|
||||
section higgsVec
|
||||
|
||||
/-- The continuous linear map from the vector space `higgsVec` to `(Fin 2 → ℂ)` achieved by
|
||||
casting vectors. -/
|
||||
def higgsVecToFin2ℂ : higgsVec →L[ℝ] (Fin 2 → ℂ) where
|
||||
def higgsVecToFin2ℂ : HiggsVec →L[ℝ] (Fin 2 → ℂ) where
|
||||
toFun x := x
|
||||
map_add' x y := by simp
|
||||
map_smul' a x := by simp
|
||||
|
||||
lemma smooth_higgsVecToFin2ℂ : Smooth 𝓘(ℝ, higgsVec) 𝓘(ℝ, Fin 2 → ℂ) higgsVecToFin2ℂ :=
|
||||
lemma smooth_higgsVecToFin2ℂ : Smooth 𝓘(ℝ, HiggsVec) 𝓘(ℝ, Fin 2 → ℂ) higgsVecToFin2ℂ :=
|
||||
ContinuousLinearMap.smooth higgsVecToFin2ℂ
|
||||
|
||||
namespace higgsVec
|
||||
namespace HiggsVec
|
||||
|
||||
/-- The Higgs representation as a homomorphism from the gauge group to unitary `2×2`-matrices. -/
|
||||
@[simps!]
|
||||
noncomputable def higgsRepUnitary : gaugeGroup →* unitaryGroup (Fin 2) ℂ where
|
||||
noncomputable def higgsRepUnitary : GaugeGroup →* unitaryGroup (Fin 2) ℂ where
|
||||
toFun g := repU1 g.2.2 * fundamentalSU2 g.2.1
|
||||
map_mul' := by
|
||||
intro ⟨_, a2, a3⟩ ⟨_, b2, b3⟩
|
||||
|
@ -66,11 +65,11 @@ noncomputable def higgsRepUnitary : gaugeGroup →* unitaryGroup (Fin 2) ℂ whe
|
|||
map_one' := by simp
|
||||
|
||||
/-- An orthonormal basis of higgsVec. -/
|
||||
noncomputable def orthonormBasis : OrthonormalBasis (Fin 2) ℂ higgsVec :=
|
||||
noncomputable def orthonormBasis : OrthonormalBasis (Fin 2) ℂ HiggsVec :=
|
||||
EuclideanSpace.basisFun (Fin 2) ℂ
|
||||
|
||||
/-- Takes in a `2×2`-matrix and returns a linear map of `higgsVec`. -/
|
||||
noncomputable def matrixToLin : Matrix (Fin 2) (Fin 2) ℂ →* (higgsVec →L[ℂ] higgsVec) where
|
||||
noncomputable def matrixToLin : Matrix (Fin 2) (Fin 2) ℂ →* (HiggsVec →L[ℂ] HiggsVec) where
|
||||
toFun g := LinearMap.toContinuousLinearMap
|
||||
$ Matrix.toLin orthonormBasis.toBasis orthonormBasis.toBasis g
|
||||
map_mul' g h := ContinuousLinearMap.coe_inj.mp $
|
||||
|
@ -82,36 +81,36 @@ lemma matrixToLin_star (g : Matrix (Fin 2) (Fin 2) ℂ) :
|
|||
ContinuousLinearMap.coe_inj.mp $ Matrix.toLin_conjTranspose orthonormBasis orthonormBasis g
|
||||
|
||||
lemma matrixToLin_unitary (g : unitaryGroup (Fin 2) ℂ) :
|
||||
matrixToLin g ∈ unitary (higgsVec →L[ℂ] higgsVec) := by
|
||||
matrixToLin g ∈ unitary (HiggsVec →L[ℂ] HiggsVec) := by
|
||||
rw [@unitary.mem_iff, ← matrixToLin_star, ← matrixToLin.map_mul, ← matrixToLin.map_mul,
|
||||
mem_unitaryGroup_iff.mp g.prop, mem_unitaryGroup_iff'.mp g.prop, matrixToLin.map_one]
|
||||
simp
|
||||
|
||||
/-- The natural homomorphism from unitary `2×2` complex matrices to unitary transformations
|
||||
of `higgsVec`. -/
|
||||
noncomputable def unitaryToLin : unitaryGroup (Fin 2) ℂ →* unitary (higgsVec →L[ℂ] higgsVec) where
|
||||
noncomputable def unitaryToLin : unitaryGroup (Fin 2) ℂ →* unitary (HiggsVec →L[ℂ] HiggsVec) where
|
||||
toFun g := ⟨matrixToLin g, matrixToLin_unitary g⟩
|
||||
map_mul' g h := by simp
|
||||
map_one' := by simp
|
||||
|
||||
/-- The inclusion of unitary transformations on `higgsVec` into all linear transformations. -/
|
||||
@[simps!]
|
||||
def unitToLinear : unitary (higgsVec →L[ℂ] higgsVec) →* higgsVec →ₗ[ℂ] higgsVec :=
|
||||
DistribMulAction.toModuleEnd ℂ higgsVec
|
||||
def unitToLinear : unitary (HiggsVec →L[ℂ] HiggsVec) →* HiggsVec →ₗ[ℂ] HiggsVec :=
|
||||
DistribMulAction.toModuleEnd ℂ HiggsVec
|
||||
|
||||
/-- The representation of the gauge group acting on `higgsVec`. -/
|
||||
@[simps!]
|
||||
def rep : Representation ℂ gaugeGroup higgsVec :=
|
||||
def rep : Representation ℂ GaugeGroup HiggsVec :=
|
||||
unitToLinear.comp (unitaryToLin.comp higgsRepUnitary)
|
||||
|
||||
lemma higgsRepUnitary_mul (g : gaugeGroup) (φ : higgsVec) :
|
||||
lemma higgsRepUnitary_mul (g : GaugeGroup) (φ : HiggsVec) :
|
||||
(higgsRepUnitary g).1 *ᵥ φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) := by
|
||||
simp [higgsRepUnitary_apply_coe, smul_mulVec_assoc]
|
||||
|
||||
lemma rep_apply (g : gaugeGroup) (φ : higgsVec) : rep g φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) :=
|
||||
lemma rep_apply (g : GaugeGroup) (φ : HiggsVec) : rep g φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) :=
|
||||
higgsRepUnitary_mul g φ
|
||||
|
||||
lemma norm_invariant (g : gaugeGroup) (φ : higgsVec) : ‖rep g φ‖ = ‖φ‖ :=
|
||||
lemma norm_invariant (g : GaugeGroup) (φ : HiggsVec) : ‖rep g φ‖ = ‖φ‖ :=
|
||||
ContinuousLinearMap.norm_map_of_mem_unitary (unitaryToLin (higgsRepUnitary g)).2 φ
|
||||
|
||||
section potentialDefn
|
||||
|
@ -120,13 +119,13 @@ variable (μSq lambda : ℝ)
|
|||
local notation "λ" => lambda
|
||||
|
||||
/-- The higgs potential for `higgsVec`, i.e. for constant higgs fields. -/
|
||||
def potential (φ : higgsVec) : ℝ := - μSq * ‖φ‖ ^ 2 + λ * ‖φ‖ ^ 4
|
||||
def potential (φ : HiggsVec) : ℝ := - μSq * ‖φ‖ ^ 2 + λ * ‖φ‖ ^ 4
|
||||
|
||||
lemma potential_invariant (φ : higgsVec) (g : gaugeGroup) :
|
||||
lemma potential_invariant (φ : HiggsVec) (g : GaugeGroup) :
|
||||
potential μSq (λ) (rep g φ) = potential μSq (λ) φ := by
|
||||
simp only [potential, neg_mul, norm_invariant]
|
||||
|
||||
lemma potential_as_quad (φ : higgsVec) :
|
||||
lemma potential_as_quad (φ : HiggsVec) :
|
||||
λ * ‖φ‖ ^ 2 * ‖φ‖ ^ 2 + (- μSq ) * ‖φ‖ ^ 2 + (- potential μSq (λ) φ) = 0 := by
|
||||
simp [potential]; ring
|
||||
|
||||
|
@ -138,7 +137,7 @@ variable (μSq : ℝ)
|
|||
variable (hLam : 0 < lambda)
|
||||
local notation "λ" => lambda
|
||||
|
||||
lemma potential_snd_term_nonneg (φ : higgsVec) :
|
||||
lemma potential_snd_term_nonneg (φ : HiggsVec) :
|
||||
0 ≤ λ * ‖φ‖ ^ 4 := by
|
||||
rw [mul_nonneg_iff]
|
||||
apply Or.inl
|
||||
|
@ -146,7 +145,7 @@ lemma potential_snd_term_nonneg (φ : higgsVec) :
|
|||
exact le_of_lt hLam
|
||||
|
||||
|
||||
lemma zero_le_potential_discrim (φ : higgsVec) :
|
||||
lemma zero_le_potential_discrim (φ : HiggsVec) :
|
||||
0 ≤ discrim (λ) (- μSq ) (- potential μSq (λ) φ) := by
|
||||
have h1 := potential_as_quad μSq (λ) φ
|
||||
rw [quadratic_eq_zero_iff_discrim_eq_sq] at h1
|
||||
|
@ -154,7 +153,7 @@ lemma zero_le_potential_discrim (φ : higgsVec) :
|
|||
exact sq_nonneg (2 * lambda * ‖φ‖ ^ 2 + -μSq)
|
||||
· exact ne_of_gt hLam
|
||||
|
||||
lemma potential_eq_zero_sol (φ : higgsVec)
|
||||
lemma potential_eq_zero_sol (φ : HiggsVec)
|
||||
(hV : potential μSq (λ) φ = 0) : φ = 0 ∨ ‖φ‖ ^ 2 = μSq / λ := by
|
||||
have h1 := potential_as_quad μSq (λ) φ
|
||||
rw [hV] at h1
|
||||
|
@ -169,7 +168,7 @@ lemma potential_eq_zero_sol (φ : higgsVec)
|
|||
linear_combination h2
|
||||
|
||||
lemma potential_eq_zero_sol_of_μSq_nonpos (hμSq : μSq ≤ 0)
|
||||
(φ : higgsVec) (hV : potential μSq (λ) φ = 0) : φ = 0 := by
|
||||
(φ : HiggsVec) (hV : potential μSq (λ) φ = 0) : φ = 0 := by
|
||||
cases' (potential_eq_zero_sol μSq hLam φ hV) with h1 h1
|
||||
exact h1
|
||||
by_cases hμSqZ : μSq = 0
|
||||
|
@ -181,7 +180,7 @@ lemma potential_eq_zero_sol_of_μSq_nonpos (hμSq : μSq ≤ 0)
|
|||
· rw [← h1]
|
||||
exact sq_nonneg ‖φ‖
|
||||
|
||||
lemma potential_bounded_below (φ : higgsVec) :
|
||||
lemma potential_bounded_below (φ : HiggsVec) :
|
||||
- μSq ^ 2 / (4 * (λ)) ≤ potential μSq (λ) φ := by
|
||||
have h1 := zero_le_potential_discrim μSq hLam φ
|
||||
simp [discrim] at h1
|
||||
|
@ -195,17 +194,17 @@ lemma potential_bounded_below (φ : higgsVec) :
|
|||
exact h2
|
||||
|
||||
lemma potential_bounded_below_of_μSq_nonpos {μSq : ℝ}
|
||||
(hμSq : μSq ≤ 0) (φ : higgsVec) : 0 ≤ potential μSq (λ) φ := by
|
||||
(hμSq : μSq ≤ 0) (φ : HiggsVec) : 0 ≤ potential μSq (λ) φ := by
|
||||
refine add_nonneg ?_ (potential_snd_term_nonneg hLam φ)
|
||||
field_simp [mul_nonpos_iff]
|
||||
simp_all [ge_iff_le, norm_nonneg, pow_nonneg, and_self, or_true]
|
||||
|
||||
lemma potential_eq_bound_discrim_zero (φ : higgsVec)
|
||||
lemma potential_eq_bound_discrim_zero (φ : HiggsVec)
|
||||
(hV : potential μSq (λ) φ = - μSq ^ 2 / (4 * λ)) :
|
||||
discrim (λ) (- μSq) (- potential μSq (λ) φ) = 0 := by
|
||||
field_simp [discrim, hV]
|
||||
|
||||
lemma potential_eq_bound_higgsVec_sq (φ : higgsVec)
|
||||
lemma potential_eq_bound_higgsVec_sq (φ : HiggsVec)
|
||||
(hV : potential μSq (λ) φ = - μSq ^ 2 / (4 * (λ))) :
|
||||
‖φ‖ ^ 2 = μSq / (2 * λ) := by
|
||||
have h1 := potential_as_quad μSq (λ) φ
|
||||
|
@ -214,7 +213,7 @@ lemma potential_eq_bound_higgsVec_sq (φ : higgsVec)
|
|||
simp_rw [h1, neg_neg]
|
||||
exact ne_of_gt hLam
|
||||
|
||||
lemma potential_eq_bound_iff (φ : higgsVec) :
|
||||
lemma potential_eq_bound_iff (φ : HiggsVec) :
|
||||
potential μSq (λ) φ = - μSq ^ 2 / (4 * (λ)) ↔ ‖φ‖ ^ 2 = μSq / (2 * (λ)) :=
|
||||
Iff.intro (potential_eq_bound_higgsVec_sq μSq hLam φ)
|
||||
(fun h ↦ by
|
||||
|
@ -223,24 +222,24 @@ lemma potential_eq_bound_iff (φ : higgsVec) :
|
|||
ring_nf)
|
||||
|
||||
lemma potential_eq_bound_iff_of_μSq_nonpos {μSq : ℝ}
|
||||
(hμSq : μSq ≤ 0) (φ : higgsVec) : potential μSq (λ) φ = 0 ↔ φ = 0 :=
|
||||
(hμSq : μSq ≤ 0) (φ : HiggsVec) : potential μSq (λ) φ = 0 ↔ φ = 0 :=
|
||||
Iff.intro (fun h ↦ potential_eq_zero_sol_of_μSq_nonpos μSq hLam hμSq φ h)
|
||||
(fun h ↦ by simp [potential, h])
|
||||
|
||||
lemma potential_eq_bound_IsMinOn (φ : higgsVec)
|
||||
lemma potential_eq_bound_IsMinOn (φ : HiggsVec)
|
||||
(hv : potential μSq lambda φ = - μSq ^ 2 / (4 * lambda)) :
|
||||
IsMinOn (potential μSq lambda) Set.univ φ := by
|
||||
rw [isMinOn_univ_iff, hv]
|
||||
exact fun x ↦ potential_bounded_below μSq hLam x
|
||||
|
||||
lemma potential_eq_bound_IsMinOn_of_μSq_nonpos {μSq : ℝ}
|
||||
(hμSq : μSq ≤ 0) (φ : higgsVec) (hv : potential μSq lambda φ = 0) :
|
||||
(hμSq : μSq ≤ 0) (φ : HiggsVec) (hv : potential μSq lambda φ = 0) :
|
||||
IsMinOn (potential μSq lambda) Set.univ φ := by
|
||||
rw [isMinOn_univ_iff, hv]
|
||||
exact fun x ↦ potential_bounded_below_of_μSq_nonpos hLam hμSq x
|
||||
|
||||
lemma potential_bound_reached_of_μSq_nonneg {μSq : ℝ} (hμSq : 0 ≤ μSq) :
|
||||
∃ (φ : higgsVec), potential μSq lambda φ = - μSq ^ 2 / (4 * lambda) := by
|
||||
∃ (φ : HiggsVec), potential μSq lambda φ = - μSq ^ 2 / (4 * lambda) := by
|
||||
use ![√(μSq/(2 * lambda)), 0]
|
||||
refine (potential_eq_bound_iff μSq hLam _).mpr ?_
|
||||
simp [PiLp.norm_sq_eq_of_L2]
|
||||
|
@ -269,24 +268,24 @@ lemma IsMinOn_potential_iff_of_μSq_nonpos {μSq : ℝ} (hμSq : μSq ≤ 0) :
|
|||
end potentialProp
|
||||
/-- Given a Higgs vector, a rotation matrix which puts the first component of the
|
||||
vector to zero, and the second component to a real -/
|
||||
def rotateMatrix (φ : higgsVec) : Matrix (Fin 2) (Fin 2) ℂ :=
|
||||
def rotateMatrix (φ : HiggsVec) : Matrix (Fin 2) (Fin 2) ℂ :=
|
||||
![![φ 1 /‖φ‖ , - φ 0 /‖φ‖], ![conj (φ 0) / ‖φ‖ , conj (φ 1) / ‖φ‖] ]
|
||||
|
||||
lemma rotateMatrix_star (φ : higgsVec) :
|
||||
lemma rotateMatrix_star (φ : HiggsVec) :
|
||||
star φ.rotateMatrix =
|
||||
![![conj (φ 1) /‖φ‖ , φ 0 /‖φ‖], ![- conj (φ 0) / ‖φ‖ , φ 1 / ‖φ‖] ] := by
|
||||
simp_rw [star, rotateMatrix, conjTranspose]
|
||||
ext i j
|
||||
fin_cases i <;> fin_cases j <;> simp [conj_ofReal]
|
||||
|
||||
lemma rotateMatrix_det {φ : higgsVec} (hφ : φ ≠ 0) : (rotateMatrix φ).det = 1 := by
|
||||
lemma rotateMatrix_det {φ : HiggsVec} (hφ : φ ≠ 0) : (rotateMatrix φ).det = 1 := by
|
||||
have h1 : (‖φ‖ : ℂ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
|
||||
field_simp [rotateMatrix, det_fin_two]
|
||||
rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||||
simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm, add_comm]
|
||||
|
||||
lemma rotateMatrix_unitary {φ : higgsVec} (hφ : φ ≠ 0) :
|
||||
lemma rotateMatrix_unitary {φ : HiggsVec} (hφ : φ ≠ 0) :
|
||||
(rotateMatrix φ) ∈ unitaryGroup (Fin 2) ℂ := by
|
||||
rw [mem_unitaryGroup_iff', rotateMatrix_star, rotateMatrix]
|
||||
erw [mul_fin_two, one_fin_two]
|
||||
|
@ -301,16 +300,16 @@ lemma rotateMatrix_unitary {φ : higgsVec} (hφ : φ ≠ 0) :
|
|||
· simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
|
||||
|
||||
lemma rotateMatrix_specialUnitary {φ : higgsVec} (hφ : φ ≠ 0) :
|
||||
lemma rotateMatrix_specialUnitary {φ : HiggsVec} (hφ : φ ≠ 0) :
|
||||
(rotateMatrix φ) ∈ specialUnitaryGroup (Fin 2) ℂ :=
|
||||
mem_specialUnitaryGroup_iff.mpr ⟨rotateMatrix_unitary hφ, rotateMatrix_det hφ⟩
|
||||
|
||||
/-- Given a Higgs vector, an element of the gauge group which puts the first component of the
|
||||
vector to zero, and the second component to a real -/
|
||||
def rotateGuageGroup {φ : higgsVec} (hφ : φ ≠ 0) : gaugeGroup :=
|
||||
def rotateGuageGroup {φ : HiggsVec} (hφ : φ ≠ 0) : GaugeGroup :=
|
||||
⟨1, ⟨(rotateMatrix φ), rotateMatrix_specialUnitary hφ⟩, 1⟩
|
||||
|
||||
lemma rotateGuageGroup_apply {φ : higgsVec} (hφ : φ ≠ 0) :
|
||||
lemma rotateGuageGroup_apply {φ : HiggsVec} (hφ : φ ≠ 0) :
|
||||
rep (rotateGuageGroup hφ) φ = ![0, ofReal ‖φ‖] := by
|
||||
rw [rep_apply]
|
||||
simp only [rotateGuageGroup, rotateMatrix, one_pow, one_smul,
|
||||
|
@ -330,8 +329,8 @@ lemma rotateGuageGroup_apply {φ : higgsVec} (hφ : φ ≠ 0) :
|
|||
simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
|
||||
|
||||
theorem rotate_fst_zero_snd_real (φ : higgsVec) :
|
||||
∃ (g : gaugeGroup), rep g φ = ![0, ofReal ‖φ‖] := by
|
||||
theorem rotate_fst_zero_snd_real (φ : HiggsVec) :
|
||||
∃ (g : GaugeGroup), rep g φ = ![0, ofReal ‖φ‖] := by
|
||||
by_cases h : φ = 0
|
||||
· use ⟨1, 1, 1⟩
|
||||
simp [h]
|
||||
|
@ -340,8 +339,7 @@ theorem rotate_fst_zero_snd_real (φ : higgsVec) :
|
|||
· use rotateGuageGroup h
|
||||
exact rotateGuageGroup_apply h
|
||||
|
||||
end higgsVec
|
||||
end higgsVec
|
||||
end HiggsVec
|
||||
|
||||
end
|
||||
end StandardModel
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue