refactor: Change case of type and props
This commit is contained in:
parent
18b83f582e
commit
f7a638d32e
58 changed files with 695 additions and 696 deletions
|
@ -37,25 +37,24 @@ open Complex
|
|||
open ComplexConjugate
|
||||
|
||||
/-- The complex vector space in which the Higgs field takes values. -/
|
||||
abbrev higgsVec := EuclideanSpace ℂ (Fin 2)
|
||||
abbrev HiggsVec := EuclideanSpace ℂ (Fin 2)
|
||||
|
||||
section higgsVec
|
||||
|
||||
/-- The continuous linear map from the vector space `higgsVec` to `(Fin 2 → ℂ)` achieved by
|
||||
casting vectors. -/
|
||||
def higgsVecToFin2ℂ : higgsVec →L[ℝ] (Fin 2 → ℂ) where
|
||||
def higgsVecToFin2ℂ : HiggsVec →L[ℝ] (Fin 2 → ℂ) where
|
||||
toFun x := x
|
||||
map_add' x y := by simp
|
||||
map_smul' a x := by simp
|
||||
|
||||
lemma smooth_higgsVecToFin2ℂ : Smooth 𝓘(ℝ, higgsVec) 𝓘(ℝ, Fin 2 → ℂ) higgsVecToFin2ℂ :=
|
||||
lemma smooth_higgsVecToFin2ℂ : Smooth 𝓘(ℝ, HiggsVec) 𝓘(ℝ, Fin 2 → ℂ) higgsVecToFin2ℂ :=
|
||||
ContinuousLinearMap.smooth higgsVecToFin2ℂ
|
||||
|
||||
namespace higgsVec
|
||||
namespace HiggsVec
|
||||
|
||||
/-- The Higgs representation as a homomorphism from the gauge group to unitary `2×2`-matrices. -/
|
||||
@[simps!]
|
||||
noncomputable def higgsRepUnitary : gaugeGroup →* unitaryGroup (Fin 2) ℂ where
|
||||
noncomputable def higgsRepUnitary : GaugeGroup →* unitaryGroup (Fin 2) ℂ where
|
||||
toFun g := repU1 g.2.2 * fundamentalSU2 g.2.1
|
||||
map_mul' := by
|
||||
intro ⟨_, a2, a3⟩ ⟨_, b2, b3⟩
|
||||
|
@ -66,11 +65,11 @@ noncomputable def higgsRepUnitary : gaugeGroup →* unitaryGroup (Fin 2) ℂ whe
|
|||
map_one' := by simp
|
||||
|
||||
/-- An orthonormal basis of higgsVec. -/
|
||||
noncomputable def orthonormBasis : OrthonormalBasis (Fin 2) ℂ higgsVec :=
|
||||
noncomputable def orthonormBasis : OrthonormalBasis (Fin 2) ℂ HiggsVec :=
|
||||
EuclideanSpace.basisFun (Fin 2) ℂ
|
||||
|
||||
/-- Takes in a `2×2`-matrix and returns a linear map of `higgsVec`. -/
|
||||
noncomputable def matrixToLin : Matrix (Fin 2) (Fin 2) ℂ →* (higgsVec →L[ℂ] higgsVec) where
|
||||
noncomputable def matrixToLin : Matrix (Fin 2) (Fin 2) ℂ →* (HiggsVec →L[ℂ] HiggsVec) where
|
||||
toFun g := LinearMap.toContinuousLinearMap
|
||||
$ Matrix.toLin orthonormBasis.toBasis orthonormBasis.toBasis g
|
||||
map_mul' g h := ContinuousLinearMap.coe_inj.mp $
|
||||
|
@ -82,36 +81,36 @@ lemma matrixToLin_star (g : Matrix (Fin 2) (Fin 2) ℂ) :
|
|||
ContinuousLinearMap.coe_inj.mp $ Matrix.toLin_conjTranspose orthonormBasis orthonormBasis g
|
||||
|
||||
lemma matrixToLin_unitary (g : unitaryGroup (Fin 2) ℂ) :
|
||||
matrixToLin g ∈ unitary (higgsVec →L[ℂ] higgsVec) := by
|
||||
matrixToLin g ∈ unitary (HiggsVec →L[ℂ] HiggsVec) := by
|
||||
rw [@unitary.mem_iff, ← matrixToLin_star, ← matrixToLin.map_mul, ← matrixToLin.map_mul,
|
||||
mem_unitaryGroup_iff.mp g.prop, mem_unitaryGroup_iff'.mp g.prop, matrixToLin.map_one]
|
||||
simp
|
||||
|
||||
/-- The natural homomorphism from unitary `2×2` complex matrices to unitary transformations
|
||||
of `higgsVec`. -/
|
||||
noncomputable def unitaryToLin : unitaryGroup (Fin 2) ℂ →* unitary (higgsVec →L[ℂ] higgsVec) where
|
||||
noncomputable def unitaryToLin : unitaryGroup (Fin 2) ℂ →* unitary (HiggsVec →L[ℂ] HiggsVec) where
|
||||
toFun g := ⟨matrixToLin g, matrixToLin_unitary g⟩
|
||||
map_mul' g h := by simp
|
||||
map_one' := by simp
|
||||
|
||||
/-- The inclusion of unitary transformations on `higgsVec` into all linear transformations. -/
|
||||
@[simps!]
|
||||
def unitToLinear : unitary (higgsVec →L[ℂ] higgsVec) →* higgsVec →ₗ[ℂ] higgsVec :=
|
||||
DistribMulAction.toModuleEnd ℂ higgsVec
|
||||
def unitToLinear : unitary (HiggsVec →L[ℂ] HiggsVec) →* HiggsVec →ₗ[ℂ] HiggsVec :=
|
||||
DistribMulAction.toModuleEnd ℂ HiggsVec
|
||||
|
||||
/-- The representation of the gauge group acting on `higgsVec`. -/
|
||||
@[simps!]
|
||||
def rep : Representation ℂ gaugeGroup higgsVec :=
|
||||
def rep : Representation ℂ GaugeGroup HiggsVec :=
|
||||
unitToLinear.comp (unitaryToLin.comp higgsRepUnitary)
|
||||
|
||||
lemma higgsRepUnitary_mul (g : gaugeGroup) (φ : higgsVec) :
|
||||
lemma higgsRepUnitary_mul (g : GaugeGroup) (φ : HiggsVec) :
|
||||
(higgsRepUnitary g).1 *ᵥ φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) := by
|
||||
simp [higgsRepUnitary_apply_coe, smul_mulVec_assoc]
|
||||
|
||||
lemma rep_apply (g : gaugeGroup) (φ : higgsVec) : rep g φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) :=
|
||||
lemma rep_apply (g : GaugeGroup) (φ : HiggsVec) : rep g φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) :=
|
||||
higgsRepUnitary_mul g φ
|
||||
|
||||
lemma norm_invariant (g : gaugeGroup) (φ : higgsVec) : ‖rep g φ‖ = ‖φ‖ :=
|
||||
lemma norm_invariant (g : GaugeGroup) (φ : HiggsVec) : ‖rep g φ‖ = ‖φ‖ :=
|
||||
ContinuousLinearMap.norm_map_of_mem_unitary (unitaryToLin (higgsRepUnitary g)).2 φ
|
||||
|
||||
section potentialDefn
|
||||
|
@ -120,13 +119,13 @@ variable (μSq lambda : ℝ)
|
|||
local notation "λ" => lambda
|
||||
|
||||
/-- The higgs potential for `higgsVec`, i.e. for constant higgs fields. -/
|
||||
def potential (φ : higgsVec) : ℝ := - μSq * ‖φ‖ ^ 2 + λ * ‖φ‖ ^ 4
|
||||
def potential (φ : HiggsVec) : ℝ := - μSq * ‖φ‖ ^ 2 + λ * ‖φ‖ ^ 4
|
||||
|
||||
lemma potential_invariant (φ : higgsVec) (g : gaugeGroup) :
|
||||
lemma potential_invariant (φ : HiggsVec) (g : GaugeGroup) :
|
||||
potential μSq (λ) (rep g φ) = potential μSq (λ) φ := by
|
||||
simp only [potential, neg_mul, norm_invariant]
|
||||
|
||||
lemma potential_as_quad (φ : higgsVec) :
|
||||
lemma potential_as_quad (φ : HiggsVec) :
|
||||
λ * ‖φ‖ ^ 2 * ‖φ‖ ^ 2 + (- μSq ) * ‖φ‖ ^ 2 + (- potential μSq (λ) φ) = 0 := by
|
||||
simp [potential]; ring
|
||||
|
||||
|
@ -138,7 +137,7 @@ variable (μSq : ℝ)
|
|||
variable (hLam : 0 < lambda)
|
||||
local notation "λ" => lambda
|
||||
|
||||
lemma potential_snd_term_nonneg (φ : higgsVec) :
|
||||
lemma potential_snd_term_nonneg (φ : HiggsVec) :
|
||||
0 ≤ λ * ‖φ‖ ^ 4 := by
|
||||
rw [mul_nonneg_iff]
|
||||
apply Or.inl
|
||||
|
@ -146,7 +145,7 @@ lemma potential_snd_term_nonneg (φ : higgsVec) :
|
|||
exact le_of_lt hLam
|
||||
|
||||
|
||||
lemma zero_le_potential_discrim (φ : higgsVec) :
|
||||
lemma zero_le_potential_discrim (φ : HiggsVec) :
|
||||
0 ≤ discrim (λ) (- μSq ) (- potential μSq (λ) φ) := by
|
||||
have h1 := potential_as_quad μSq (λ) φ
|
||||
rw [quadratic_eq_zero_iff_discrim_eq_sq] at h1
|
||||
|
@ -154,7 +153,7 @@ lemma zero_le_potential_discrim (φ : higgsVec) :
|
|||
exact sq_nonneg (2 * lambda * ‖φ‖ ^ 2 + -μSq)
|
||||
· exact ne_of_gt hLam
|
||||
|
||||
lemma potential_eq_zero_sol (φ : higgsVec)
|
||||
lemma potential_eq_zero_sol (φ : HiggsVec)
|
||||
(hV : potential μSq (λ) φ = 0) : φ = 0 ∨ ‖φ‖ ^ 2 = μSq / λ := by
|
||||
have h1 := potential_as_quad μSq (λ) φ
|
||||
rw [hV] at h1
|
||||
|
@ -169,7 +168,7 @@ lemma potential_eq_zero_sol (φ : higgsVec)
|
|||
linear_combination h2
|
||||
|
||||
lemma potential_eq_zero_sol_of_μSq_nonpos (hμSq : μSq ≤ 0)
|
||||
(φ : higgsVec) (hV : potential μSq (λ) φ = 0) : φ = 0 := by
|
||||
(φ : HiggsVec) (hV : potential μSq (λ) φ = 0) : φ = 0 := by
|
||||
cases' (potential_eq_zero_sol μSq hLam φ hV) with h1 h1
|
||||
exact h1
|
||||
by_cases hμSqZ : μSq = 0
|
||||
|
@ -181,7 +180,7 @@ lemma potential_eq_zero_sol_of_μSq_nonpos (hμSq : μSq ≤ 0)
|
|||
· rw [← h1]
|
||||
exact sq_nonneg ‖φ‖
|
||||
|
||||
lemma potential_bounded_below (φ : higgsVec) :
|
||||
lemma potential_bounded_below (φ : HiggsVec) :
|
||||
- μSq ^ 2 / (4 * (λ)) ≤ potential μSq (λ) φ := by
|
||||
have h1 := zero_le_potential_discrim μSq hLam φ
|
||||
simp [discrim] at h1
|
||||
|
@ -195,17 +194,17 @@ lemma potential_bounded_below (φ : higgsVec) :
|
|||
exact h2
|
||||
|
||||
lemma potential_bounded_below_of_μSq_nonpos {μSq : ℝ}
|
||||
(hμSq : μSq ≤ 0) (φ : higgsVec) : 0 ≤ potential μSq (λ) φ := by
|
||||
(hμSq : μSq ≤ 0) (φ : HiggsVec) : 0 ≤ potential μSq (λ) φ := by
|
||||
refine add_nonneg ?_ (potential_snd_term_nonneg hLam φ)
|
||||
field_simp [mul_nonpos_iff]
|
||||
simp_all [ge_iff_le, norm_nonneg, pow_nonneg, and_self, or_true]
|
||||
|
||||
lemma potential_eq_bound_discrim_zero (φ : higgsVec)
|
||||
lemma potential_eq_bound_discrim_zero (φ : HiggsVec)
|
||||
(hV : potential μSq (λ) φ = - μSq ^ 2 / (4 * λ)) :
|
||||
discrim (λ) (- μSq) (- potential μSq (λ) φ) = 0 := by
|
||||
field_simp [discrim, hV]
|
||||
|
||||
lemma potential_eq_bound_higgsVec_sq (φ : higgsVec)
|
||||
lemma potential_eq_bound_higgsVec_sq (φ : HiggsVec)
|
||||
(hV : potential μSq (λ) φ = - μSq ^ 2 / (4 * (λ))) :
|
||||
‖φ‖ ^ 2 = μSq / (2 * λ) := by
|
||||
have h1 := potential_as_quad μSq (λ) φ
|
||||
|
@ -214,7 +213,7 @@ lemma potential_eq_bound_higgsVec_sq (φ : higgsVec)
|
|||
simp_rw [h1, neg_neg]
|
||||
exact ne_of_gt hLam
|
||||
|
||||
lemma potential_eq_bound_iff (φ : higgsVec) :
|
||||
lemma potential_eq_bound_iff (φ : HiggsVec) :
|
||||
potential μSq (λ) φ = - μSq ^ 2 / (4 * (λ)) ↔ ‖φ‖ ^ 2 = μSq / (2 * (λ)) :=
|
||||
Iff.intro (potential_eq_bound_higgsVec_sq μSq hLam φ)
|
||||
(fun h ↦ by
|
||||
|
@ -223,24 +222,24 @@ lemma potential_eq_bound_iff (φ : higgsVec) :
|
|||
ring_nf)
|
||||
|
||||
lemma potential_eq_bound_iff_of_μSq_nonpos {μSq : ℝ}
|
||||
(hμSq : μSq ≤ 0) (φ : higgsVec) : potential μSq (λ) φ = 0 ↔ φ = 0 :=
|
||||
(hμSq : μSq ≤ 0) (φ : HiggsVec) : potential μSq (λ) φ = 0 ↔ φ = 0 :=
|
||||
Iff.intro (fun h ↦ potential_eq_zero_sol_of_μSq_nonpos μSq hLam hμSq φ h)
|
||||
(fun h ↦ by simp [potential, h])
|
||||
|
||||
lemma potential_eq_bound_IsMinOn (φ : higgsVec)
|
||||
lemma potential_eq_bound_IsMinOn (φ : HiggsVec)
|
||||
(hv : potential μSq lambda φ = - μSq ^ 2 / (4 * lambda)) :
|
||||
IsMinOn (potential μSq lambda) Set.univ φ := by
|
||||
rw [isMinOn_univ_iff, hv]
|
||||
exact fun x ↦ potential_bounded_below μSq hLam x
|
||||
|
||||
lemma potential_eq_bound_IsMinOn_of_μSq_nonpos {μSq : ℝ}
|
||||
(hμSq : μSq ≤ 0) (φ : higgsVec) (hv : potential μSq lambda φ = 0) :
|
||||
(hμSq : μSq ≤ 0) (φ : HiggsVec) (hv : potential μSq lambda φ = 0) :
|
||||
IsMinOn (potential μSq lambda) Set.univ φ := by
|
||||
rw [isMinOn_univ_iff, hv]
|
||||
exact fun x ↦ potential_bounded_below_of_μSq_nonpos hLam hμSq x
|
||||
|
||||
lemma potential_bound_reached_of_μSq_nonneg {μSq : ℝ} (hμSq : 0 ≤ μSq) :
|
||||
∃ (φ : higgsVec), potential μSq lambda φ = - μSq ^ 2 / (4 * lambda) := by
|
||||
∃ (φ : HiggsVec), potential μSq lambda φ = - μSq ^ 2 / (4 * lambda) := by
|
||||
use ![√(μSq/(2 * lambda)), 0]
|
||||
refine (potential_eq_bound_iff μSq hLam _).mpr ?_
|
||||
simp [PiLp.norm_sq_eq_of_L2]
|
||||
|
@ -269,24 +268,24 @@ lemma IsMinOn_potential_iff_of_μSq_nonpos {μSq : ℝ} (hμSq : μSq ≤ 0) :
|
|||
end potentialProp
|
||||
/-- Given a Higgs vector, a rotation matrix which puts the first component of the
|
||||
vector to zero, and the second component to a real -/
|
||||
def rotateMatrix (φ : higgsVec) : Matrix (Fin 2) (Fin 2) ℂ :=
|
||||
def rotateMatrix (φ : HiggsVec) : Matrix (Fin 2) (Fin 2) ℂ :=
|
||||
![![φ 1 /‖φ‖ , - φ 0 /‖φ‖], ![conj (φ 0) / ‖φ‖ , conj (φ 1) / ‖φ‖] ]
|
||||
|
||||
lemma rotateMatrix_star (φ : higgsVec) :
|
||||
lemma rotateMatrix_star (φ : HiggsVec) :
|
||||
star φ.rotateMatrix =
|
||||
![![conj (φ 1) /‖φ‖ , φ 0 /‖φ‖], ![- conj (φ 0) / ‖φ‖ , φ 1 / ‖φ‖] ] := by
|
||||
simp_rw [star, rotateMatrix, conjTranspose]
|
||||
ext i j
|
||||
fin_cases i <;> fin_cases j <;> simp [conj_ofReal]
|
||||
|
||||
lemma rotateMatrix_det {φ : higgsVec} (hφ : φ ≠ 0) : (rotateMatrix φ).det = 1 := by
|
||||
lemma rotateMatrix_det {φ : HiggsVec} (hφ : φ ≠ 0) : (rotateMatrix φ).det = 1 := by
|
||||
have h1 : (‖φ‖ : ℂ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ)
|
||||
field_simp [rotateMatrix, det_fin_two]
|
||||
rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq]
|
||||
simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm, add_comm]
|
||||
|
||||
lemma rotateMatrix_unitary {φ : higgsVec} (hφ : φ ≠ 0) :
|
||||
lemma rotateMatrix_unitary {φ : HiggsVec} (hφ : φ ≠ 0) :
|
||||
(rotateMatrix φ) ∈ unitaryGroup (Fin 2) ℂ := by
|
||||
rw [mem_unitaryGroup_iff', rotateMatrix_star, rotateMatrix]
|
||||
erw [mul_fin_two, one_fin_two]
|
||||
|
@ -301,16 +300,16 @@ lemma rotateMatrix_unitary {φ : higgsVec} (hφ : φ ≠ 0) :
|
|||
· simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
|
||||
|
||||
lemma rotateMatrix_specialUnitary {φ : higgsVec} (hφ : φ ≠ 0) :
|
||||
lemma rotateMatrix_specialUnitary {φ : HiggsVec} (hφ : φ ≠ 0) :
|
||||
(rotateMatrix φ) ∈ specialUnitaryGroup (Fin 2) ℂ :=
|
||||
mem_specialUnitaryGroup_iff.mpr ⟨rotateMatrix_unitary hφ, rotateMatrix_det hφ⟩
|
||||
|
||||
/-- Given a Higgs vector, an element of the gauge group which puts the first component of the
|
||||
vector to zero, and the second component to a real -/
|
||||
def rotateGuageGroup {φ : higgsVec} (hφ : φ ≠ 0) : gaugeGroup :=
|
||||
def rotateGuageGroup {φ : HiggsVec} (hφ : φ ≠ 0) : GaugeGroup :=
|
||||
⟨1, ⟨(rotateMatrix φ), rotateMatrix_specialUnitary hφ⟩, 1⟩
|
||||
|
||||
lemma rotateGuageGroup_apply {φ : higgsVec} (hφ : φ ≠ 0) :
|
||||
lemma rotateGuageGroup_apply {φ : HiggsVec} (hφ : φ ≠ 0) :
|
||||
rep (rotateGuageGroup hφ) φ = ![0, ofReal ‖φ‖] := by
|
||||
rw [rep_apply]
|
||||
simp only [rotateGuageGroup, rotateMatrix, one_pow, one_smul,
|
||||
|
@ -330,8 +329,8 @@ lemma rotateGuageGroup_apply {φ : higgsVec} (hφ : φ ≠ 0) :
|
|||
simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add,
|
||||
Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm]
|
||||
|
||||
theorem rotate_fst_zero_snd_real (φ : higgsVec) :
|
||||
∃ (g : gaugeGroup), rep g φ = ![0, ofReal ‖φ‖] := by
|
||||
theorem rotate_fst_zero_snd_real (φ : HiggsVec) :
|
||||
∃ (g : GaugeGroup), rep g φ = ![0, ofReal ‖φ‖] := by
|
||||
by_cases h : φ = 0
|
||||
· use ⟨1, 1, 1⟩
|
||||
simp [h]
|
||||
|
@ -340,8 +339,7 @@ theorem rotate_fst_zero_snd_real (φ : higgsVec) :
|
|||
· use rotateGuageGroup h
|
||||
exact rotateGuageGroup_apply h
|
||||
|
||||
end higgsVec
|
||||
end higgsVec
|
||||
end HiggsVec
|
||||
|
||||
end
|
||||
end StandardModel
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue