refactor: Spelling
This commit is contained in:
parent
b82791d671
commit
f8f1e1757f
25 changed files with 80 additions and 80 deletions
|
@ -98,7 +98,7 @@ lemma rep_apply (g : GaugeGroupI) (φ : HiggsVec) : rep g φ = g.2.2 ^ 3 • (g.
|
|||
-/
|
||||
|
||||
/-- Given a Higgs vector, a rotation matrix which puts the first component of the
|
||||
svector to zero, and the second component to a real -/
|
||||
vector to zero, and the second component to a real -/
|
||||
def rotateMatrix (φ : HiggsVec) : Matrix (Fin 2) (Fin 2) ℂ :=
|
||||
![![φ 1 /‖φ‖, - φ 0 /‖φ‖], ![conj (φ 0) / ‖φ‖, conj (φ 1) / ‖φ‖]]
|
||||
|
||||
|
@ -152,7 +152,7 @@ def rotateGuageGroup {φ : HiggsVec} (hφ : φ ≠ 0) : GaugeGroupI :=
|
|||
⟨1, ⟨(rotateMatrix φ), rotateMatrix_specialUnitary hφ⟩, 1⟩
|
||||
|
||||
/-- Acting on a non-zero Higgs vector with its rotation matrix gives a vector which is
|
||||
zero in the first componenent and a positive real in the second component. -/
|
||||
zero in the first component and a positive real in the second component. -/
|
||||
lemma rotateGuageGroup_apply {φ : HiggsVec} (hφ : φ ≠ 0) :
|
||||
rep (rotateGuageGroup hφ) φ = ![0, Complex.ofRealHom ‖φ‖] := by
|
||||
rw [rep_apply]
|
||||
|
@ -175,7 +175,7 @@ lemma rotateGuageGroup_apply {φ : HiggsVec} (hφ : φ ≠ 0) :
|
|||
|
||||
/-- For every Higgs vector there exists an element of the gauge group which rotates that
|
||||
Higgs vector to have `0` in the first component and be a non-negative real in the second
|
||||
componenet. -/
|
||||
component. -/
|
||||
theorem rotate_fst_zero_snd_real (φ : HiggsVec) :
|
||||
∃ (g : GaugeGroupI), rep g φ = ![0, Complex.ofReal ‖φ‖] := by
|
||||
by_cases h : φ = 0
|
||||
|
@ -189,7 +189,7 @@ theorem rotate_fst_zero_snd_real (φ : HiggsVec) :
|
|||
|
||||
/-- For every Higgs vector there exists an element of the gauge group which rotates that
|
||||
Higgs vector to have `0` in the second component and be a non-negative real in the first
|
||||
componenet. -/
|
||||
component. -/
|
||||
theorem rotate_fst_real_snd_zero (φ : HiggsVec) :
|
||||
∃ (g : GaugeGroupI), rep g φ = ![Complex.ofReal ‖φ‖, 0] := by
|
||||
obtain ⟨g, h⟩ := rotate_fst_zero_snd_real φ
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue