feat: make informal_definition and informal_lemma commands (#300)
* make informal_definition and informal_lemma commands * drop the fields "math", "physics", and "proof" from InformalDefinition/InformalLemma and use docstrings instead * render informal docstring in dependency graph
This commit is contained in:
parent
6aab0ba3cd
commit
f8f94979ab
33 changed files with 666 additions and 1089 deletions
|
@ -22,54 +22,62 @@ namespace PatiSalam
|
|||
|
||||
-/
|
||||
|
||||
/-- The gauge group of the Pati-Salam model (unquotiented by ℤ₂), i.e., `SU(4) × SU(2) × SU(2)`. -/
|
||||
informal_definition GaugeGroupI where
|
||||
math :≈ "The group `SU(4) x SU(2) x SU(2)`."
|
||||
physics :≈ "The gauge group of the Pati-Salam model (unquotiented by ℤ₂)."
|
||||
deps := []
|
||||
|
||||
/-- The homomorphism of the Standard Model gauge group into the Pati-Salam gauge group, i.e., the
|
||||
group homomorphism `SU(3) × SU(2) × U(1) → SU(4) × SU(2) × SU(2)` taking `(h, g, α)` to
|
||||
`(blockdiag (α h, α ^ (-3)), g, diag (α ^ 3, α ^(-3))`.
|
||||
|
||||
See page 54 of https://math.ucr.edu/home/baez/guts.pdf
|
||||
-/
|
||||
informal_definition inclSM where
|
||||
physics :≈ "The homomorphism of the Standard Model gauge group into the Pati-Salam gauge group."
|
||||
math :≈ "The group homomorphism `SU(3) x SU(2) x U(1) -> SU(4) x SU(2) x SU(2)`
|
||||
taking (h, g, α) to (blockdiag (α h, α ^ (-3)), g, diag(α ^ (3), α ^(-3)))."
|
||||
ref :≈ "Page 54 of https://math.ucr.edu/home/baez/guts.pdf"
|
||||
deps :≈ [``GaugeGroupI, ``StandardModel.GaugeGroupI]
|
||||
deps := [``GaugeGroupI, ``StandardModel.GaugeGroupI]
|
||||
|
||||
/-- The kernel of the map `inclSM` is equal to the subgroup `StandardModel.gaugeGroupℤ₃SubGroup`.
|
||||
|
||||
See footnote 10 of https://arxiv.org/pdf/2201.07245
|
||||
-/
|
||||
informal_lemma inclSM_ker where
|
||||
math :≈ "The kernel of the map ``inclSM is equal to the subgroup
|
||||
``StandardModel.gaugeGroupℤ₃SubGroup."
|
||||
ref :≈ "Footnote 10 of https://arxiv.org/pdf/2201.07245"
|
||||
deps :≈ [``inclSM, ``StandardModel.gaugeGroupℤ₃SubGroup]
|
||||
deps := [``inclSM, ``StandardModel.gaugeGroupℤ₃SubGroup]
|
||||
|
||||
/-- The group embedding from `StandardModel.GaugeGroupℤ₃` to `GaugeGroupI` induced by `inclSM` by
|
||||
quotienting by the kernal `inclSM_ker`.
|
||||
-/
|
||||
informal_definition embedSMℤ₃ where
|
||||
math :≈ "The group embedding from ``StandardModel.GaugeGroupℤ₃ to ``GaugeGroupI
|
||||
induced by ``inclSM by quotienting by the kernal ``inclSM_ker."
|
||||
deps :≈ [``inclSM, ``StandardModel.GaugeGroupℤ₃, ``GaugeGroupI, ``inclSM_ker]
|
||||
deps := [``inclSM, ``StandardModel.GaugeGroupℤ₃, ``GaugeGroupI, ``inclSM_ker]
|
||||
|
||||
/-- The equivalence between `GaugeGroupI` and `Spin(6) × Spin(4)`. -/
|
||||
informal_definition gaugeGroupISpinEquiv where
|
||||
math :≈ "The equivalence between `GaugeGroupI` and `Spin(6) × Spin(4)`."
|
||||
deps :≈ [``GaugeGroupI]
|
||||
deps := [``GaugeGroupI]
|
||||
|
||||
/-- The ℤ₂-subgroup of the un-quotiented gauge group which acts trivially on all particles in the
|
||||
standard model, i.e., the ℤ₂-subgroup of `GaugeGroupI` with the non-trivial element `(-1, -1, -1)`.
|
||||
|
||||
See https://math.ucr.edu/home/baez/guts.pdf
|
||||
-/
|
||||
informal_definition gaugeGroupℤ₂SubGroup where
|
||||
physics :≈ "The ℤ₂-subgroup of the un-quotiented gauge group which acts trivially on
|
||||
all particles in the standard model."
|
||||
math :≈ "The ℤ₂-subgroup of ``GaugeGroupI with the non-trivial element (-1, -1, -1)."
|
||||
ref :≈ "https://math.ucr.edu/home/baez/guts.pdf"
|
||||
deps :≈ [``GaugeGroupI]
|
||||
deps := [``GaugeGroupI]
|
||||
|
||||
/-- The gauge group of the Pati-Salam model with a ℤ₂ quotient, i.e., the quotient of `GaugeGroupI`
|
||||
by the ℤ₂-subgroup `gaugeGroupℤ₂SubGroup`.
|
||||
|
||||
See https://math.ucr.edu/home/baez/guts.pdf
|
||||
-/
|
||||
informal_definition GaugeGroupℤ₂ where
|
||||
physics :≈ "The gauge group of the Pati-Salam model with a ℤ₂ quotient."
|
||||
math :≈ "The quotient of ``GaugeGroupI by the ℤ₂-subgroup `gaugeGroupℤ₂SubGroup`."
|
||||
ref :≈ "https://math.ucr.edu/home/baez/guts.pdf"
|
||||
deps :≈ [``GaugeGroupI, ``gaugeGroupℤ₂SubGroup]
|
||||
deps := [``GaugeGroupI, ``gaugeGroupℤ₂SubGroup]
|
||||
|
||||
/-- The group `StandardModel.gaugeGroupℤ₆SubGroup` under the homomorphism `embedSM` factors through
|
||||
the subgroup `gaugeGroupℤ₂SubGroup`.
|
||||
-/
|
||||
informal_lemma sm_ℤ₆_factor_through_gaugeGroupℤ₂SubGroup where
|
||||
math :≈ "The group ``StandardModel.gaugeGroupℤ₆SubGroup under the homomorphism ``embedSM factors
|
||||
through the subgroup ``gaugeGroupℤ₂SubGroup."
|
||||
deps :≈ [``inclSM, ``StandardModel.gaugeGroupℤ₆SubGroup, ``gaugeGroupℤ₂SubGroup]
|
||||
deps := [``inclSM, ``StandardModel.gaugeGroupℤ₆SubGroup, ``gaugeGroupℤ₂SubGroup]
|
||||
|
||||
/-- The group homomorphism from `StandardModel.GaugeGroupℤ₆` to `GaugeGroupℤ₂` induced by `embedSM`.
|
||||
-/
|
||||
informal_definition embedSMℤ₆Toℤ₂ where
|
||||
math :≈ "The group homomorphism from ``StandardModel.GaugeGroupℤ₆ to ``GaugeGroupℤ₂
|
||||
induced by ``embedSM."
|
||||
deps :≈ [``inclSM, ``StandardModel.GaugeGroupℤ₆, ``GaugeGroupℤ₂,
|
||||
deps := [``inclSM, ``StandardModel.GaugeGroupℤ₆, ``GaugeGroupℤ₂,
|
||||
``sm_ℤ₆_factor_through_gaugeGroupℤ₂SubGroup]
|
||||
|
||||
end PatiSalam
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue