refactor: Update Koszul Sign Insert - change order

This commit is contained in:
jstoobysmith 2024-12-20 11:45:23 +00:00
parent 8a3d72bd68
commit f988143c77
2 changed files with 85 additions and 88 deletions

View file

@ -16,43 +16,48 @@ import HepLean.PerturbationTheory.Wick.Signs.InsertSign
namespace Wick
open HepLean.List
open FieldStatistic
variable {𝓕 : Type} (q : 𝓕 → FieldStatistic) (le : 𝓕𝓕 → Prop) [DecidableRel le]
/-- Gives a factor of `-1` when inserting `a` into a list `List I` in the ordered position
for each fermion-fermion cross. -/
def koszulSignInsert {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2) (a : I) :
List I →
def koszulSignInsert {𝓕 : Type} (q : 𝓕 → FieldStatistic) (le : 𝓕𝓕 → Prop)
[DecidableRel le] (a : 𝓕) : List 𝓕
| [] => 1
| b :: l => if r a b then koszulSignInsert r q a l else
if q a = 1 ∧ q b = 1 then - koszulSignInsert r q a l else koszulSignInsert r q a l
| b :: l => if le a b then koszulSignInsert q le a l else
if q a = fermionic ∧ q b = fermionic then - koszulSignInsert q le a l else
koszulSignInsert q le a l
/-- When inserting a boson the `koszulSignInsert` is always `1`. -/
lemma koszulSignInsert_boson {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2) (a : I)
(ha : q a = 0) : (l : List I) → koszulSignInsert r q a l = 1
lemma koszulSignInsert_boson (q : 𝓕 → FieldStatistic) (le : 𝓕𝓕 → Prop) [DecidableRel le]
(a : 𝓕) (ha : q a = bosonic) : (l : List 𝓕) → koszulSignInsert q le a l = 1
| [] => by
simp [koszulSignInsert]
| b :: l => by
simp only [koszulSignInsert, Fin.isValue, ite_eq_left_iff]
rw [koszulSignInsert_boson r q a ha l, ha]
simp only [Fin.isValue, zero_ne_one, false_and, ↓reduceIte, ite_self]
rw [koszulSignInsert_boson q le a ha l, ha]
simp only [reduceCtorEq, false_and, ↓reduceIte, ite_self]
@[simp]
lemma koszulSignInsert_mul_self {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2)
(a : I) : (l : List I) → koszulSignInsert r q a l * koszulSignInsert r q a l = 1
lemma koszulSignInsert_mul_self (a : 𝓕) :
(l : List 𝓕) → koszulSignInsert q le a l * koszulSignInsert q le a l = 1
| [] => by
simp [koszulSignInsert]
| b :: l => by
simp only [koszulSignInsert, Fin.isValue, mul_ite, ite_mul, neg_mul, mul_neg]
by_cases hr : r a b
by_cases hr : le a b
· simp only [hr, ↓reduceIte]
rw [koszulSignInsert_mul_self]
· simp only [hr, ↓reduceIte, Fin.isValue]
by_cases hq : q a = 1 ∧ q b = 1
· simp only [hq, Fin.isValue, and_self, ↓reduceIte, neg_neg]
· simp only [hr, ↓reduceIte]
by_cases hq : q a = fermionic ∧ q b = fermionic
· simp only [hq, and_self, ↓reduceIte, neg_neg]
rw [koszulSignInsert_mul_self]
· simp only [Fin.isValue, hq, ↓reduceIte]
· simp only [hq, ↓reduceIte]
rw [koszulSignInsert_mul_self]
lemma koszulSignInsert_le_forall {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2)
(a : I) (l : List I) (hi : ∀ b, r a b) : koszulSignInsert r q a l = 1 := by
lemma koszulSignInsert_le_forall (a : 𝓕) (l : List 𝓕) (hi : ∀ b, le a b) :
koszulSignInsert q le a l = 1 := by
induction l with
| nil => rfl
| cons j l ih =>
@ -62,29 +67,27 @@ lemma koszulSignInsert_le_forall {I : Type} (r : I → I → Prop) [DecidableRel
intro h
exact False.elim (h (hi j))
lemma koszulSignInsert_ge_forall_append {I : Type} (r : I → I → Prop) [DecidableRel r]
(q : I → Fin 2) (l : List I) (j i : I) (hi : ∀ j, r j i) :
koszulSignInsert r q j l = koszulSignInsert r q j (l ++ [i]) := by
lemma koszulSignInsert_ge_forall_append (l : List 𝓕) (j i : 𝓕) (hi : ∀ j, le j i) :
koszulSignInsert q le j l = koszulSignInsert q le j (l ++ [i]) := by
induction l with
| nil => simp [koszulSignInsert, hi]
| cons b l ih =>
simp only [koszulSignInsert, Fin.isValue, List.append_eq]
by_cases hr : r j b
by_cases hr : le j b
· rw [if_pos hr, if_pos hr]
rw [ih]
· rw [if_neg hr, if_neg hr]
rw [ih]
lemma koszulSignInsert_eq_filter {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
(r0 : I) : (r : List I) →
koszulSignInsert le1 q r0 r =
koszulSignInsert le1 q r0 (List.filter (fun i => decide (¬ le1 r0 i)) r)
lemma koszulSignInsert_eq_filter (r0 : 𝓕) : (r : List 𝓕) →
koszulSignInsert q le r0 r =
koszulSignInsert q le r0 (List.filter (fun i => decide (¬ le r0 i)) r)
| [] => by
simp [koszulSignInsert]
| r1 :: r => by
dsimp only [koszulSignInsert, Fin.isValue]
simp only [Fin.isValue, List.filter, decide_not]
by_cases h : le1 r0 r1
by_cases h : le r0 r1
· simp only [h, ↓reduceIte, decide_True, Bool.not_true]
rw [koszulSignInsert_eq_filter]
congr
@ -97,73 +100,68 @@ lemma koszulSignInsert_eq_filter {I : Type} (q : I → Fin 2) (le1 : I → I →
simp only [decide_not]
simp
lemma koszulSignInsert_eq_cons {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
[IsTotal I le1] (r0 : I) (r : List I) :
koszulSignInsert le1 q r0 r = koszulSignInsert le1 q r0 (r0 :: r) := by
lemma koszulSignInsert_eq_cons [IsTotal 𝓕 le] (r0 : 𝓕) (r : List 𝓕) :
koszulSignInsert q le r0 r = koszulSignInsert q le r0 (r0 :: r) := by
simp only [koszulSignInsert, Fin.isValue, and_self]
have h1 : le1 r0 r0 := by
simpa using IsTotal.total (r := le1) r0 r0
have h1 : le r0 r0 := by
simpa using IsTotal.total (r := le) r0 r0
simp [h1]
lemma koszulSignInsert_eq_grade {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
(r0 : I) (r : List I) : koszulSignInsert le1 q r0 r = if grade q [r0] = 1
grade q (List.filter (fun i => decide (¬ le1 r0 i)) r) = 1 then -1 else 1 := by
lemma koszulSignInsert_eq_grade (r0 : 𝓕) (r : List 𝓕) :
koszulSignInsert q le r0 r = if ofList q [r0] = fermionic
ofList q (List.filter (fun i => decide (¬ le r0 i)) r) = fermionic then -1 else 1 := by
induction r with
| nil =>
simp [koszulSignInsert]
| cons r1 r ih =>
rw [koszulSignInsert_eq_filter]
by_cases hr1 : ¬ le1 r0 r1
by_cases hr1 : ¬ le r0 r1
· rw [List.filter_cons_of_pos]
· dsimp only [koszulSignInsert, Fin.isValue, decide_not]
rw [if_neg hr1]
dsimp only [Fin.isValue, grade, ite_eq_right_iff, zero_ne_one, imp_false, decide_not]
simp only [Fin.isValue, decide_not, ite_eq_right_iff, zero_ne_one, imp_false]
have ha (a b c : Fin 2) : (if a = 1 ∧ b = 1 then -if ¬a = 0
c = 1 then -1 else (1 : )
else if ¬a = 0 ∧ c = 1 then -1 else 1) =
if ¬a = 0 ∧ ¬b = c then -1 else 1 := by
dsimp only [Fin.isValue, ofList, ite_eq_right_iff, zero_ne_one, imp_false, decide_not]
simp only [decide_not, ite_eq_right_iff, reduceCtorEq, imp_false]
have ha (a b c : FieldStatistic) : (if a = fermionic ∧ b = fermionic then -if ¬a = bosonic
c = fermionic then -1 else (1 : )
else if ¬a = bosonic ∧ c = fermionic then -1 else 1) =
if ¬a = bosonic ∧ ¬b = c then -1 else 1 := by
fin_cases a <;> fin_cases b <;> fin_cases c
any_goals rfl
simp
rw [← ha (q r0) (q r1) (grade q (List.filter (fun a => !decide (le1 r0 a)) r))]
rw [← ha (q r0) (q r1) (ofList q (List.filter (fun a => !decide (le r0 a)) r))]
congr
· rw [koszulSignInsert_eq_filter] at ih
simpa [grade] using ih
simpa [ofList] using ih
· rw [koszulSignInsert_eq_filter] at ih
simpa [grade] using ih
simpa [ofList] using ih
· simp [hr1]
· rw [List.filter_cons_of_neg]
simp only [decide_not, Fin.isValue]
rw [koszulSignInsert_eq_filter] at ih
simpa [grade] using ih
simpa [ofList] using ih
simpa using hr1
lemma koszulSignInsert_eq_perm {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) (r r' : List I)
(a : I) [DecidableRel le1] (h : r.Perm r') :
koszulSignInsert le1 q a r = koszulSignInsert le1 q a r' := by
lemma koszulSignInsert_eq_perm (r r' : List 𝓕) (a : 𝓕) (h : r.Perm r') :
koszulSignInsert q le a r = koszulSignInsert q le a r' := by
rw [koszulSignInsert_eq_grade]
rw [koszulSignInsert_eq_grade]
congr 1
simp only [Fin.isValue, decide_not, eq_iff_iff, and_congr_right_iff]
intro h'
have hg : grade q (List.filter (fun i => !decide (le1 a i)) r) =
grade q (List.filter (fun i => !decide (le1 a i)) r') := by
rw [grade_count, grade_count]
rw [List.countP_filter, List.countP_filter]
rw [h.countP_eq]
have hg : ofList q (List.filter (fun i => !decide (le a i)) r) =
ofList q (List.filter (fun i => !decide (le a i)) r') := by
apply ofList_perm
exact List.Perm.filter (fun i => !decide (le a i)) h
rw [hg]
lemma koszulSignInsert_eq_sort {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) (r : List I)
(a : I) [DecidableRel le1] :
koszulSignInsert le1 q a r = koszulSignInsert le1 q a (List.insertionSort le1 r) := by
lemma koszulSignInsert_eq_sort (r : List 𝓕) (a : 𝓕) :
koszulSignInsert q le a r = koszulSignInsert q le a (List.insertionSort le r) := by
apply koszulSignInsert_eq_perm
exact List.Perm.symm (List.perm_insertionSort le1 r)
exact List.Perm.symm (List.perm_insertionSort le r)
lemma koszulSignInsert_eq_insertSign {I : Type} (q : I → Fin 2) (le1 : I → I → Prop)
[DecidableRel le1] [IsTotal I le1] [IsTrans I le1] (r0 : I) (r : List I) :
koszulSignInsert le1 q r0 r = insertSign q (orderedInsertPos le1 (List.insertionSort le1 r) r0)
r0 (List.insertionSort le1 r) := by
lemma koszulSignInsert_eq_insertSign [IsTotal 𝓕 le] [IsTrans 𝓕 le] (r0 : 𝓕) (r : List 𝓕) :
koszulSignInsert q le r0 r = insertSign q (orderedInsertPos le (List.insertionSort le r) r0)
r0 (List.insertionSort le r) := by
rw [koszulSignInsert_eq_cons, koszulSignInsert_eq_sort, koszulSignInsert_eq_filter,
koszulSignInsert_eq_grade, insertSign, superCommuteCoef]
congr
@ -171,9 +169,9 @@ lemma koszulSignInsert_eq_insertSign {I : Type} (q : I → Fin 2) (le1 : I → I
rw [List.insertionSort]
nth_rewrite 1 [List.orderedInsert_eq_take_drop]
rw [List.filter_append]
have h1 : List.filter (fun a => decide ¬le1 r0 a)
(List.takeWhile (fun b => decide ¬le1 r0 b) (List.insertionSort le1 r))
= (List.takeWhile (fun b => decide ¬le1 r0 b) (List.insertionSort le1 r)) := by
have h1 : List.filter (fun a => decide ¬le r0 a)
(List.takeWhile (fun b => decide ¬le r0 b) (List.insertionSort le r))
= (List.takeWhile (fun b => decide ¬le r0 b) (List.insertionSort le r)) := by
induction r with
| nil => simp
| cons r1 r ih =>
@ -184,15 +182,15 @@ lemma koszulSignInsert_eq_insertSign {I : Type} (q : I → Fin 2) (le1 : I → I
simp_all
rw [h1]
rw [List.filter_cons]
simp only [decide_not, (IsTotal.to_isRefl le1).refl r0, not_true_eq_false, decide_False,
simp only [decide_not, (IsTotal.to_isRefl le).refl r0, not_true_eq_false, decide_False,
Bool.false_eq_true, ↓reduceIte]
rw [orderedInsertPos_take]
simp only [decide_not, List.append_right_eq_self, List.filter_eq_nil_iff, Bool.not_eq_eq_eq_not,
Bool.not_true, decide_eq_false_iff_not, Decidable.not_not]
intro a ha
refine List.Sorted.rel_of_mem_take_of_mem_drop
(k := (orderedInsertPos le1 (List.insertionSort le1 r) r0).1 + 1)
(List.sorted_insertionSort le1 (r0 :: r)) ?_ ?_
(k := (orderedInsertPos le (List.insertionSort le r) r0).1 + 1)
(List.sorted_insertionSort le (r0 :: r)) ?_ ?_
· simp only [List.insertionSort, List.orderedInsert_eq_take_drop, decide_not]
rw [List.take_append_eq_append_take]
rw [List.take_of_length_le]
@ -204,40 +202,36 @@ lemma koszulSignInsert_eq_insertSign {I : Type} (q : I → Fin 2) (le1 : I → I
· simpa [orderedInsertPos] using ha
· simp [orderedInsertPos]
lemma koszulSignInsert_insertIdx {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
(i j : I) (r : List I) (n : ) (hn : n ≤ r.length) :
koszulSignInsert le1 q j (List.insertIdx n i r) = koszulSignInsert le1 q j (i :: r) := by
lemma koszulSignInsert_insertIdx (i j : 𝓕) (r : List 𝓕) (n : ) (hn : n ≤ r.length) :
koszulSignInsert q le j (List.insertIdx n i r) = koszulSignInsert q le j (i :: r) := by
apply koszulSignInsert_eq_perm
exact List.perm_insertIdx i r hn
/-- The difference in `koszulSignInsert` on inserting `r0` into `r` compared to
into `r1 :: r` for any `r`. -/
def koszulSignCons {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1] (r0 r1 : I) :
:=
if le1 r0 r1 then 1 else
if q r0 = 1 ∧ q r1 = 1 then -1 else 1
def koszulSignCons (r0 r1 : 𝓕) : :=
if le r0 r1 then 1 else
if q r0 = fermionic ∧ q r1 = fermionic then -1 else 1
lemma koszulSignCons_eq_superComuteCoef {I : Type} (q : I → Fin 2) (le1 : I → I → Prop)
[DecidableRel le1] (r0 r1 : I) : koszulSignCons q le1 r0 r1 =
if le1 r0 r1 then 1 else superCommuteCoef q [r0] [r1] := by
simp only [koszulSignCons, Fin.isValue, superCommuteCoef, grade, ite_eq_right_iff, zero_ne_one,
lemma koszulSignCons_eq_superComuteCoef (r0 r1 : 𝓕) : koszulSignCons q le r0 r1 =
if le r0 r1 then 1 else superCommuteCoef q [r0] [r1] := by
simp only [koszulSignCons, Fin.isValue, superCommuteCoef, ofList, ite_eq_right_iff, zero_ne_one,
imp_false]
congr 1
by_cases h0 : q r0 = 1
· by_cases h1 : q r1 = 1
by_cases h0 : q r0 = fermionic
· by_cases h1 : q r1 = fermionic
· simp [h0, h1]
· have h1 : q r1 = 0 := by omega
· have h1 : q r1 = bosonic := (neq_fermionic_iff_eq_bosonic (q r1)).mp h1
simp [h0, h1]
· have h0 : q r0 = 0 := by omega
by_cases h1 : q r1 = 1
· have h0 : q r0 = bosonic := (neq_fermionic_iff_eq_bosonic (q r0)).mp h0
by_cases h1 : q r1 = fermionic
· simp [h0, h1]
· have h1 : q r1 = 0 := by omega
· have h1 : q r1 = bosonic := (neq_fermionic_iff_eq_bosonic (q r1)).mp h1
simp [h0, h1]
lemma koszulSignInsert_cons {I : Type} (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1]
(r0 r1 : I) (r : List I) :
koszulSignInsert le1 q r0 (r1 :: r) = (koszulSignCons q le1 r0 r1) *
koszulSignInsert le1 q r0 r := by
lemma koszulSignInsert_cons (r0 r1 : 𝓕) (r : List 𝓕) :
koszulSignInsert q le r0 (r1 :: r) = (koszulSignCons q le r0 r1) *
koszulSignInsert q le r0 r := by
simp [koszulSignInsert, koszulSignCons]
end Wick