feat: Field struct and creation and annihilation sections

This commit is contained in:
jstoobysmith 2025-01-06 10:45:50 +00:00
parent 83908c6d0d
commit fb31135426
5 changed files with 422 additions and 0 deletions

View file

@ -0,0 +1,74 @@
/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.Wick.OperatorMap
import HepLean.Mathematics.Fin.Involutions
import HepLean.Lorentz.RealVector.Basic
import HepLean.SpaceTime.Basic
/-!
# Field structures
-/
/-- A field structure is a type of fields plus a specification of the
statistics (fermionic or bosonic) of each field. -/
structure FieldStruct where
/-- The type of fields. -/
Fields : Type
/-- The specification if a field is bosonic or fermionic. -/
statistics : 𝓕 → FieldStatistic
namespace FieldStruct
variable (𝓕 : FieldStruct)
/-- Negative asymptotic states are specified by a field and a momentum. -/
def AsymptoticNegTime : Type := 𝓕.Fields × Lorentz.Contr 4
/-- Positive asymptotic states are specified by a field and a momentum. -/
def AsymptoticPosTime : Type := 𝓕.Fields × Lorentz.Contr 4
/-- States specified by a field and a space-time position. -/
def PositionStates : Type := 𝓕.Fields × SpaceTime
/-- The combintation of asymptotic states and position states. -/
inductive States (𝓕 : FieldStruct) where
| negAsymp : 𝓕.AsymptoticNegTime → 𝓕.States
| position : 𝓕.PositionStates → 𝓕.States
| posAsymp : 𝓕.AsymptoticPosTime → 𝓕.States
/-- Taking a state to its underlying field. -/
def statesToField : 𝓕.States → 𝓕.Fields
| States.negAsymp φ => φ.1
| States.position φ => φ.1
| States.posAsymp φ => φ.1
/-- The statistics associated to a state. -/
def statesStatistic : 𝓕.States → FieldStatistic := 𝓕.statistics ∘ 𝓕.statesToField
/-- Returns true if `timeOrder a b` is true if `a` has time greater then or equal to `b`.
This will put the stats at the greatest time to left. -/
def timeOrder : 𝓕.States → 𝓕.States → Prop
| States.posAsymp _, _ => True
| States.position φ0, States.position φ1 => φ1.2 0 ≤ φ0.2 0
| States.position _, States.negAsymp _ => True
| States.position _, States.posAsymp _ => False
| States.negAsymp _, States.posAsymp _ => False
| States.negAsymp _, States.position _ => False
| States.negAsymp _, States.negAsymp _ => True
/-- Time ordering is total. -/
instance : IsTotal 𝓕.States 𝓕.timeOrder where
total a b := by
cases a <;> cases b <;> simp [timeOrder]
exact LinearOrder.le_total _ _
/-- Time ordering is transitive. -/
instance : IsTrans 𝓕.States 𝓕.timeOrder where
trans a b c := by
cases a <;> cases b <;> cases c <;> simp [timeOrder]
exact fun h1 h2 => Preorder.le_trans _ _ _ h2 h1
end FieldStruct